UNIT 14 EXERCISES 6-10

ALGEBRA

2011A

6. The players on a basketball team made some three-point shots, some two-point shots, and some one-point free throws. They scored as many points with twopoint shots as with three-point shots. Their number of successful free throws was one more than their number of successful two-point shots. The team's total score was 61 points. How many free throws did they make?

Free PDF

- **(A)** 13
- **(B)** 14
- **(C)** 15
- **(D)** 16
- **(E)** 17

1999

- 7. What is the largest number of acute angles that a convex hexagon can have?
 - (A) 2
- **(B)** 3
 - (C) 4 (D) 5
- **(E)** 6

2002B

- 7. The product of three consecutive positive integers is 8 times their sum. What is the sum of their squares?
 - **(A)** 50
- **(B)** 77
- **(C)** 110
- **(D)** 149
- **(E)** 194

2008B

- 7. For real numbers a and b, define $a\$b = (a-b)^2$. What is $(x-y)^2\$(y-x)^2$?
 - **(A)** 0
- **(B)** $x^2 + y^2$ **(C)** $2x^2$ **(D)** $2y^2$ **(E)** 4xy

2014B

- 7. For how many positive integers n is $\frac{n}{30-n}$ also a positive integer?
- (A) 4 (B) 5 (C) 6 (D) 7 (E) 8

8. How many sets of two or more consecutive positive integers have a sum of 15?

- (A) 1 (B) 2 (C) 3 (D) 4

- **(E)** 5

2005A 8. Let A, M, and C be digits with

$$(100A + 10M + C)(A + M + C) = 2005.$$

What is A?

- **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 4
- **(E)** 5

2013A 8. Given that x and y are distinct nonzero real numbers such that $x + \frac{2}{x} = y + \frac{2}{y}$, what is xy?

- (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) 1 (D) 2 (E) 4

2014B

8. In the addition shown below A, B, C, and D are distinct digits. How many different values are possible for D?

$$\begin{array}{c} ABBCB \\ + BCADA \\ \hline DBDDD \end{array}$$

- (A) 2
- **(B)** 4
- (C) 7
- **(D)** 8
- **(E)** 9

2010B

9. Let n be the smallest positive integer such that n is divisible by 20, n^2 is a perfect cube, and n^3 is a perfect square. What is the number of digits of n?

- (A) 3
- **(B)** 4
- (C) 5
- **(D)** 6
- (\mathbf{E}) 7

2006A

10. For how many real values of x is $\sqrt{120 - \sqrt{x}}$ an integer?

- (A) 3 (B) 6 (C) 9 (D) 10 (E) 11

2013A

10. Let S be the set of positive integers n for which $\frac{1}{n}$ has the repeating decimal representation $0.\overline{ab} = 0.ababab...$, with a and b different digits. What is the sum of the elements of S?

- **(A)** 11
- **(B)** 44
- **(C)** 110
- **(D)** 143
- **(E)** 155

2015A 10. Integers x and y with x > y > 0 satisfy x + y + xy = 80. What is x?

- **(A)** 8 **(B)** 10 **(C)** 15 **(D)** 18
- **(E)** 26