UNIT 4 EXERCISES 16-20

TRIANGLES

21. A circle is circumscribed about a triangle with sides 20, 21, and 29, thus divid-1999 ing the interior of the circle into four regions. Let A, B, and C be the areas of the non-triangular regions, with C being the largest. Then

$$(\mathbf{A}) \ A + B = C$$

(A)
$$A + B = C$$
 (B) $A + B + 210 = C$ (C) $A^2 + B^2 = C^2$

(C)
$$A^2 + B^2 = C^2$$

(D)
$$20A + 21B = 29C$$

(D)
$$20A + 21B = 29C$$
 (E) $\frac{1}{A^2} + \frac{1}{B^2} = \frac{1}{C^2}$

2016B

21. Let ABCD be a unit square. Let Q_1 be the midpoint of CD. For $i=1,2,\ldots$ let P_i be the intersection of $\overline{AQ_i}$ and \overline{BD} , and let Q_{i+1} be the foot of the perpendicular from P_i to \overline{CD} . What is

$$\sum_{i=1}^{\infty} \text{Area of } \triangle DQ_i P_i ?$$

- (A) $\frac{1}{6}$ (B) $\frac{1}{4}$ (C) $\frac{1}{3}$ (D) $\frac{1}{2}$ (E) 1

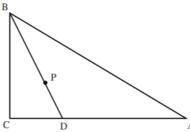
2018B

- 21. In $\triangle ABC$ with side lengths AB = 13, AC = 12, and BC = 5, let O and I denote the circumcenter and incenter, respectively. A circle with center M is tangent to the legs \overline{AC} and \overline{BC} and to the circumcircle of $\triangle ABC$. What is the area of $\triangle MOI$?

- (A) $\frac{5}{2}$ (B) $\frac{11}{4}$ (C) 3 (D) $\frac{13}{4}$ (E) $\frac{7}{2}$

2002A

22. Triangle ABC is a right triangle with $\angle ACB$ as its right angle, $m \angle ABC = 60^{\circ}$, and AB = 10. Let P be randomly chosen inside $\triangle ABC$, and extend \overline{BP} to meet \overline{AC} at D. What is the probability that $BD > 5\sqrt{2}$?



- (A) $\frac{2-\sqrt{2}}{2}$ (B) $\frac{1}{3}$ (C) $\frac{3-\sqrt{3}}{3}$ (D) $\frac{1}{2}$ (E) $\frac{5-\sqrt{5}}{5}$

2007B 22. Two particles move along the edges of equilateral $\triangle ABC$ in the direction

$$A \to B \to C \to A$$

starting simultaneously and moving at the same speed. One starts at A, and the other starts at the midpoint of \overline{BC} . The midpoint of the line segment joining the two particles traces out a path that encloses a region R. What is the ratio of the area of R to the area of $\triangle ABC$?

- (A) $\frac{1}{16}$ (B) $\frac{1}{12}$ (C) $\frac{1}{9}$ (D) $\frac{1}{6}$ (E) $\frac{1}{4}$

- 2011B 22. Let T_1 be a triangle with sides 2011, 2012, and 2013. For $n \geq 1$, if $T_n = \triangle ABC$ and D, E, and F are the points of tangency of the incircle of $\triangle ABC$ to the sides AB, BC, and AC, respectively, then T_{n+1} is a triangle with side lengths AD, BE, and CF, if it exists. What is the perimeter of the last triangle in the sequence (T_n) ?

- (A) $\frac{1509}{8}$ (B) $\frac{1509}{32}$ (C) $\frac{1509}{64}$ (D) $\frac{1509}{128}$ (E) $\frac{1509}{256}$

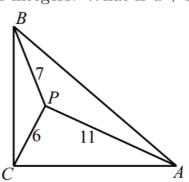
- 2002A
 - 23. In triangle ABC, side \overline{AC} and the perpendicular bisector of \overline{BC} meet in point D, and \overline{BD} bisects $\angle ABC$. If AD = 9 and DC = 7, what is the area of triangle ABD?
 - **(A)** 14

- **(B)** 21 **(C)** 28 **(D)** $14\sqrt{5}$ **(E)** $28\sqrt{5}$

- 23. In $\triangle ABC$, we have AB=1 and AC=2. Side \overline{BC} and the median from A to 2002B \overline{BC} have the same length. What is BC?

 - (A) $\frac{1+\sqrt{2}}{2}$ (B) $\frac{1+\sqrt{3}}{2}$ (C) $\sqrt{2}$ (D) $\frac{3}{2}$ (E) $\sqrt{3}$

2006B 23. Isosceles $\triangle ABC$ has a right angle at C. Point P is inside $\triangle ABC$, such that PA = 11, PB = 7, and PC = 6. Legs \overline{AC} and \overline{BC} have length $s = \sqrt{a + b\sqrt{2}}$, where a and b are positive integers. What is a + b?



- (A) 85
- **(B)** 91
- **(C)** 108
- **(D)** 121
- **(E)** 127
- 2007B 23. How many non-congruent right triangles with positive integer leg lengths have areas that are numerically equal to 3 times their perimeters?
 - **(A)** 6
- **(B)** 7
- **(C)** 8
- **(D)** 10
- **(E)** 12

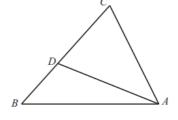
2018A

- 23. In $\triangle PAT$, $\angle P=36^{\circ}$, $\angle A=56^{\circ}$, and PA=10. Points U and G lie on sides \overline{TP} and \overline{TA} , respectively, so that PU = AG = 1. Let M and N be the midpoints of segments \overline{PA} and \overline{UG} , respectively. What is the degree measure of the acute angle formed by lines MN and PA?
 - (A) 76
- **(B)** 77
- (C) 78 (D) 79
- **(E)** 80

2001

- 24. In triangle ABC, $\angle ABC = 45^{\circ}$. Point D is on \overline{BC} so that $2 \cdot BD = CD$ and $\angle DAB = 15^{\circ}$. Find $\angle ACB$.

- (A) 54° (B) 60° (C) 72° (D) 75° (E) 90°



- 2008A 24. Triangle ABC has $\angle C = 60^{\circ}$ and BC = 4. Point D is the midpoint of \overline{BC} . What is the largest possible value of $tan(\angle BAD)$?

- (A) $\frac{\sqrt{3}}{6}$ (B) $\frac{\sqrt{3}}{3}$ (C) $\frac{\sqrt{3}}{2\sqrt{2}}$ (D) $\frac{\sqrt{3}}{4\sqrt{2}-3}$

2008B

- 24. Let $A_0 = (0,0)$. Distinct points A_1, A_2, \ldots lie on the x-axis, and distinct points B_1, B_2, \ldots lie on the graph of $y = \sqrt{x}$. For every positive integer $n, A_{n-1}B_nA_n$ is an equilateral triangle. What is the least n for which the length $A_0A_n \geq 100$?
 - **(A)** 13
- **(B)** 15
- (C) 17
- **(D)** 19
- **(E)** 21

2014A

- 24. Let $f_0(x) = x + |x 100| |x + 100|$, and for $n \ge 1$, let $f_n(x) = |f_{n-1}(x)| 1$. For how many values of x is $f_{100}(x) = 0$?
 - **(A)** 299
- **(B)** 300
- **(C)** 301
- **(D)** 302
- **(E)** 303

- 2011A 25. Triangle ABC has $\angle BAC = 60^{\circ}$, $\angle CBA \leq 90^{\circ}$, BC = 1, and $AC \geq AB$. Let H, I, and O be the orthocenter, incenter, and circumcenter of $\triangle ABC$, respectively. Assume that the area of the pentagon BCOIH is the maximum possible. What is $\angle CBA$?
 - **(A)** 60°
- **(B)** 72°
- (C) 75° (D) 80°
- **(E)** 90°