UNIT 3 EXERCISES 16-20

2D GEO WORD PROBLEMS

1999

21. A circle is circumscribed about a triangle with sides 20, 21, and 29, thus dividing the interior of the circle into four regions. Let A, B, and C be the areas of the non-triangular regions, with C being the largest. Then

(A)
$$A + B = C$$
 (B) $A + B + 210 = C$ (C) $A^2 + B^2 = C^2$

(D)
$$20A + 21B = 29C$$
 (E) $\frac{1}{A^2} + \frac{1}{B^2} = \frac{1}{C^2}$

21. Rectangle ABCD has area 2006. An ellipse with area 2006π passes through A and C and has foci at B and D. What is the perimeter of the rectangle? (The area of an ellipse is πab , where 2a and 2b are the lengths of its axes.)

(A)
$$\frac{16\sqrt{2006}}{\pi}$$

(B)
$$\frac{1003}{4}$$

(C)
$$8\sqrt{1003}$$

(D)
$$6\sqrt{2006}$$

(A)
$$\frac{16\sqrt{2006}}{\pi}$$
 (B) $\frac{1003}{4}$ (C) $8\sqrt{1003}$ (D) $6\sqrt{2006}$ (E) $\frac{32\sqrt{1003}}{\pi}$

- 21. A quadrilateral is inscribed in a circle of radius $200\sqrt{2}$. Three of the sides of this quadrilateral have length 200. What is the length of its fourth side?
 - (A) 200
- **(B)** $200\sqrt{2}$ **(C)** $200\sqrt{3}$ **(D)** $300\sqrt{2}$ **(E)** 500

- 22. A circle of radius r is concentric with and outside a regular hexagon of side length 2. The probability that three entire sides of the hexagon are visible from a randomly chosen point on the circle is 1/2. What is r?
 - (A) $2\sqrt{2} + 2\sqrt{3}$ (B) $3\sqrt{3} + \sqrt{2}$ (C) $2\sqrt{6} + \sqrt{3}$ (D) $3\sqrt{2} + \sqrt{6}$

(E) $6\sqrt{2} - \sqrt{3}$

- 2009A
- 22. A regular octahedron has side length 1. A plane parallel to two of its opposite faces cuts the octahedron into two congruent solids. The polygon formed by the intersection of the plane and the octahedron has area $\frac{a\sqrt{b}}{c}$, where a, b, and c are positive integers, a and c are relatively prime, and b is not divisible by the square of any prime. What is a + b + c?
 - **(A)** 10
- **(B)** 11
- **(C)** 12
- **(D)** 13
- **(E)** 14

- 23. The equiangular convex hexagon ABCDEF has AB = 1, BC = 4, CD = 2, 1999 and DE = 4. The area of the hexagon is
 - (A) $\frac{15}{2}\sqrt{3}$ (B) $9\sqrt{3}$ (C) 16 (D) $\frac{39}{4}\sqrt{3}$ (E) $\frac{43}{4}\sqrt{3}$

- 2007A 23. Square ABCD has area 36, and AB is parallel to the x-axis. Vertices A, B, and C are on the graphs of $y = \log_a x$, $y = 2\log_a x$, and $y = 3\log_a x$, respectively. What is a?
 - (A) $\sqrt[6]{3}$ (B) $\sqrt{3}$ (C) $\sqrt[3]{6}$ (D) $\sqrt{6}$

- **(E)** 6

- 23. ABCD is a square of side length $\sqrt{3}+1$. Point P is on \overline{AC} such that $AP=\sqrt{2}$. The square region bounded by ABCD is rotated 90° counterclockwise with center P, sweeping out a region whose area is $\frac{1}{c}(a\pi + b)$, where a, b, and c are positive integers and gcd(a, b, c) = 1. What is a + b + c?
 - (A) 15
- **(B)** 17
- (C) 19 (D) 21
- **(E)** 23

- 24. Six points on a circle are given. Four of the chords joining pairs of the six 1999 points are selected at random. What is the probability that the four chords form a convex quadrilateral?
 - (A) $\frac{1}{15}$ (B) $\frac{1}{91}$ (C) $\frac{1}{273}$ (D) $\frac{1}{455}$ (E) $\frac{1}{1365}$

- 1999 24. Six points on a circle are given. Four of the chords joining pairs of the six points are selected at random. What is the probability that the four chords form a convex quadrilateral?

- (A) $\frac{1}{15}$ (B) $\frac{1}{91}$ (C) $\frac{1}{273}$ (D) $\frac{1}{455}$ (E) $\frac{1}{1365}$

2002B

- 24. A convex quadrilateral ABCD with area 2002 contains a point P in its interior such that PA = 24, PB = 32, PC = 28, and PD = 45. Find the perimeter of ABCD.
- (A) $4\sqrt{2002}$ (B) $2\sqrt{8465}$ (C) $2\left(48 + \sqrt{2002}\right)$
- **(D)** $2\sqrt{8633}$ **(E)** $4\left(36+\sqrt{113}\right)$

2011A

- 24. Consider all quadrilaterals ABCD such that AB = 14, BC = 9, CD = 7, and DA = 12. What is the radius of the largest possible circle that fits inside or on the boundary of such a quadrilateral?
 - **(A)** $\sqrt{15}$
- **(B)** $\sqrt{21}$ **(C)** $2\sqrt{6}$
- **(D)** 5 **(E)** $2\sqrt{7}$

2014B 24. Let ABCDE be a pentagon inscribed in a circle such that AB = CD = 3, BC = DE = 10, and AE = 14. The sum of the lengths of all diagonals of ABCDE is equal to $\frac{m}{n}$, where m and n are relatively prime positive integers. What is m + n?

- **(A)** 129
- **(B)** 247
- **(C)** 353
- **(D)** 391
- **(E)** 421

- 24. Four circles, no two of which are congruent, have centers at A, B, C, and D, 2015B and points P and Q lie on all four circles. The radius of circle A is $\frac{5}{8}$ times the radius of circle B, and the radius of circle C is $\frac{5}{8}$ times the radius of circle D. Furthermore, AB = CD = 39 and PQ = 48. Let R be the midpoint of \overline{PQ} . What is AR + BR + CR + DR?
 - **(A)** 180
- **(B)** 184
- **(C)** 188
- **(D)** 192
- **(E)** 196

- 2017A
- 24. Quadrilateral ABCD is inscribed in circle O and has sides AB = 3, BC = 2, CD = 6, and DA = 8. Let X and Y be points on \overline{BD} such that

$$\frac{DX}{BD} = \frac{1}{4}$$
 and $\frac{BY}{BD} = \frac{11}{36}$.

Let E be the intersection of line AX and the line through Y parallel Let F be the intersection of line CX and the line through Let G be the point on circle O other than C that E parallel to AC. lies on line CX. What is $XF \cdot XG$?

- **(A)** 17
- (B) $\frac{59 5\sqrt{2}}{3}$ (C) $\frac{91 12\sqrt{3}}{4}$ (D) $\frac{67 10\sqrt{2}}{3}$

(E) 18

2017B

24. Quadrilateral ABCD has right angles at B and C, $\triangle ABC \sim \triangle BCD$, and AB > BC. There is a point E in the interior of ABCD such that $\triangle ABC \sim \triangle CEB$ and the area of $\triangle AED$ is 17 times the area of $\triangle CEB$. What is $\frac{AB}{BC}$?

(A) $1 + \sqrt{2}$ **(B)** $2 + \sqrt{2}$ **(C)** $\sqrt{17}$ **(D)** $2 + \sqrt{5}$ **(E)** $1 + 2\sqrt{3}$

- 2003B 25. Three points are chosen randomly and independently on a circle. What is the probability that all three pairwise distances between the points are less than the radius of the circle?
- (A) $\frac{1}{36}$ (B) $\frac{1}{24}$ (C) $\frac{1}{18}$ (D) $\frac{1}{12}$ (E) $\frac{1}{9}$

- 2007B
- 25. Points A,B,C,D, and E are located in 3-dimensional space with AB=BC=CD = DE = EA = 2 and $\angle ABC = \angle CDE = \angle DEA = 90^{\circ}$. The plane of $\triangle ABC$ is parallel to \overline{DE} . What is the area of $\triangle BDE$?
 - (A) $\sqrt{2}$
- **(B)** $\sqrt{3}$
- (C) 2 (D) $\sqrt{5}$
- (E) $\sqrt{6}$

- 2008B
 - 25. Let ABCD be a trapezoid with $AB \parallel CD$, AB = 11, BC = 5, CD = 19, and DA = 7. Bisectors of $\angle A$ and $\angle D$ meet at P, and bisectors of $\angle B$ and $\angle C$ meet at Q. What is the area of hexagon ABQCDP?

- (A) $28\sqrt{3}$ (B) $30\sqrt{3}$ (C) $32\sqrt{3}$ (D) $35\sqrt{3}$ (E) $36\sqrt{3}$

- 2010A
- 25. Two quadrilaterals are considered the same if one can be obtained from the other by a rotation and a translation. How many different convex cyclic quadrilaterals are there with integer sides and perimeter equal to 32?
 - (A) 560
- **(B)** 564
- **(C)** 568
- **(D)** 1498
- **(E)** 2255

1999

- 26. Three non-overlapping regular plane polygons, at least two of which are congruent, all have sides of length 1. The polygons meet at a point A in such a way that the sum of the three interior angles at A is 360°. Thus the three polygons form a new polygon with A as an interior point. What is the largest possible perimeter that this polygon can have?
 - (A) 12 (B) 14 (C) 18 (D) 21 (E) 24