UNIT 17 EXERCISES 16-20

TRIG

2004A 21. If $\sum_{n=0}^{\infty} \cos^{2n} \theta = 5$, what is the value of $\cos 2\theta$?

(A) $\frac{1}{5}$ (B) $\frac{2}{5}$ (C) $\frac{\sqrt{5}}{5}$ (D) $\frac{3}{5}$ (E) $\frac{4}{5}$

(A)
$$\frac{1}{5}$$

(B)
$$\frac{2}{5}$$

(C)
$$\frac{\sqrt{5}}{5}$$

(D)
$$\frac{3}{5}$$

(E)
$$\frac{4}{5}$$

- 2003B
- 23. The number of x-intercepts on the graph of $y = \sin(1/x)$ in the interval (0.0001, 0.001) is closest to
 - **(A)** 2900
- **(B)** 3000
- **(C)** 3100 **(D)** 3200
- **(E)** 3300

24. Let S be the set of all points (x,y) in the coordinate plane such that $0 \le x \le \frac{\pi}{2}$ and $0 \le y \le \frac{\pi}{2}$. What is the area of the subset of S for which

$$\sin^2 x - \sin x \sin y + \sin^2 y \le \frac{3}{4}?$$

- (A) $\frac{\pi^2}{9}$ (B) $\frac{\pi^2}{8}$ (C) $\frac{\pi^2}{6}$ (D) $\frac{3\pi^2}{16}$ (E) $\frac{2\pi^2}{9}$

2007A

- 24. For each integer n > 1, let F(n) be the number of solutions of the equation $\sin x = \sin nx$ on the interval $[0, \pi]$. What is $\sum_{n=2}^{2007} F(n)$?
 - **(A)** 2,014,524
- **(B)** 2,015,028
- **(C)** 2,015,033
- **(D)** 2,016,532

(E) 2,017,033

2009B 24. For how many values of x in $[0, \pi]$ is $\sin^{-1}(\sin 6x) = \cos^{-1}(\cos x)$?

Note: The functions $\sin^{-1} = \arcsin \ and \ \cos^{-1} = \arccos \ denote inverse trigonometric functions.$

- **(A)** 3
- **(B)** 4
- **(C)** 5
- **(D)** 6
- **(E)** 7

- 2010A 24. Let $f(x) = \log_{10}(\sin(\pi x) \cdot \sin(2\pi x) \cdot \sin(3\pi x) \cdot \cdots \sin(8\pi x))$. The intersection of the domain of f(x) with the interval [0,1] is a union of n disjoint open intervals. What is n?
 - **(A)** 2
- **(B)** 12
- **(C)** 18
- **(D)** 22
- **(E)** 36

2015A 24. Rational numbers a and b are chosen at random among all rational numbers in the interval [0,2) that can be written as fractions $\frac{n}{d}$ where n and d are integers with $1 \le d \le 5$. What is the probability that

$$\left(\cos\left(a\pi\right) + i\sin\left(b\pi\right)\right)^4$$

is a real number?

- (A) $\frac{3}{50}$ (B) $\frac{4}{25}$ (C) $\frac{41}{200}$ (D) $\frac{6}{25}$ (E) $\frac{13}{50}$

- 2014B 25. What is the sum of all positive real solutions x to the equation

$$2\cos(2x)\left(\cos(2x) - \cos\left(\frac{2014\pi^2}{x}\right)\right) = \cos(4x) - 1?$$

- (A) π (B) 810π (C) 1008π (D) 1080π (E) 1800π

- 1999 27. In triangle ABC, $3\sin A + 4\cos B = 6$ and $4\sin B + 3\cos A = 1$. Then $\angle C$ in degrees is
 - (A) 30

- (B) 60 (C) 90 (D) 120 (E) 150