UNIT 14 EXERCISES 16-20

SEQUENCE

- 2002A 21. Consider the sequence of numbers: 4, 7, 1, 8, 9, 7, 6, For n > 2, the nth term of the sequence is the units digit of the sum of the two previous terms. Let S_n denote the sum of the first n terms of this sequence. The smallest value of n for which $S_n > 10,000$ is:
 - (A) 1992 (B) 1999 (C) 2001 (D) 2002 (E) 2004

2002B

21. For all positive integers n less than 2002, let

$$a_n = \begin{cases} 11, & \text{if } n \text{ is divisible by } 13 \text{ and } 14; \\ 13, & \text{if } n \text{ is divisible by } 14 \text{ and } 11; \\ 14, & \text{if } n \text{ is divisible by } 11 \text{ and } 13; \\ 0, & \text{otherwise.} \end{cases}$$

Calculate $\sum_{n=1}^{\infty} a_n$.

- **(A)** 448
- **(B)** 486
- (C) 1560 (D) 2001
- **(E)** 2002

2006A

23. Given a finite sequence $S = (a_1, a_2, \dots, a_n)$ of n real numbers, let A(S) be the sequence

$$\left(\frac{a_1+a_2}{2}, \frac{a_2+a_3}{2}, \dots, \frac{a_{n-1}+a_n}{2}\right)$$

of n-1 real numbers. Define $A^1(S)=A(S)$ and, for each integer $m,2\leq m\leq n-1$, define $A^m(S)=A(A^{m-1}(S))$. Suppose x>0, and let $S=\left(1,x,x^2,\ldots,x^{100}\right)$. If $A^{100}(S) = (1/2^{50})$, then what is x?

(A)
$$1 - \frac{\sqrt{2}}{2}$$
 (B) $\sqrt{2} - 1$ (C) $\frac{1}{2}$ (D) $2 - \sqrt{2}$ (E) $\frac{\sqrt{2}}{2}$

2001

- 25. Consider sequences of positive real numbers of the form x, 2000, y, ..., in which every term after the first is 1 less than the product of its two immediate neighbors. For how many different values of x does the term 2001 appear somewhere in the sequence?
 - (**A**) 1
- **(B)** 2

- (C) 3 (D) 4 (E) more than 4

- 2006B
- 25. A sequence a_1, a_2, \ldots of non-negative integers is defined by the rule $a_{n+2} =$ $|a_{n+1} - a_n|$ for $n \ge 1$. If $a_1 = 999$, $a_2 < 999$, and $a_{2006} = 1$, how many different values of a_2 are possible?
 - (A) 165
- **(B)** 324
- **(C)** 495
- **(D)** 499
- **(E)** 660

- 2008A
 - 25. A sequence $(a_1, b_1), (a_2, b_2), (a_3, b_3), \ldots$ of points in the coordinate plane satis-

$$(a_{n+1}, b_{n+1}) = (\sqrt{3}a_n - b_n, \sqrt{3}b_n + a_n)$$
 for $n = 1, 2, 3, \dots$

Suppose that $(a_{100}, b_{100}) = (2, 4)$. What is $a_1 + b_1$?

- (A) $-\frac{1}{2^{97}}$ (B) $-\frac{1}{2^{99}}$ (C) 0 (D) $\frac{1}{2^{98}}$ (E) $\frac{1}{2^{96}}$

25. The first two terms of a sequence are $a_1 = 1$ and $a_2 = \frac{1}{\sqrt{3}}$. For $n \ge 1$,

$$a_{n+2} = \frac{a_n + a_{n+1}}{1 - a_n a_{n+1}}.$$

What is $|a_{2009}|$?

- (A) 0 (B) $2 \sqrt{3}$ (C) $\frac{1}{\sqrt{3}}$ (D) 1 (E) $2 + \sqrt{3}$

2016B

- 25. The sequence (a_n) is defined recursively by $a_0 = 1$, $a_1 = \sqrt[19]{2}$, and $a_n =$ $a_{n-1}a_{n-2}^2$ for $n \geq 2$. What is the smallest positive integer k such that the product $a_1 a_2 \cdots a_k$ is an integer?
 - (A) 17
- **(B)** 18 **(C)** 19
- **(D)** 20
- **(E)** 21

1999

- 28. Let x_1, x_2, \ldots, x_n be a sequence of integers such that
 - (i) $-1 \le x_i \le 2$, for $i = 1, 2, 3, \dots, n$;
 - (ii) $x_1 + x_2 + \dots + x_n = 19$; and
 - (iii) $x_1^2 + x_2^2 + \dots + x_n^2 = 99.$

Let m and M be the minimal and maximal possible values of $x_1^3 + x_2^3 + \cdots + x_n^3$, respectively. Then M/m =

- (A) 3 (B) 4 (C) 5 (D) 6
- **(E)** 7