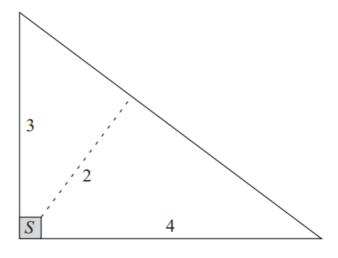
UNIT 4 QUESTIONS 16-20

TRIANGLES

- 2010A 17. Equiangular hexagon ABCDEF has side lengths AB = CD = EF = 1 and BC = DE = FA = r. The area of $\triangle ACE$ is 70% of the area of the hexagon. What is the sum of all possible values of r?
 - (A) $\frac{4\sqrt{3}}{3}$ (B) $\frac{10}{3}$ (C) 4 (D) $\frac{17}{4}$ (E) 6

2018A

17. Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths of 3 and 4 units. In the corner where those sides meet at a right angle, he leaves a small unplanted square S so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from S to the hypotenuse is 2 units. What fraction of the field is planted?



- (B) $\frac{26}{27}$
- (C) $\frac{73}{75}$ (D) $\frac{145}{147}$

2012A

18. Triangle ABC has AB = 27, AC = 26, and BC = 25. Let I denote the intersection of the internal angle bisectors of $\triangle ABC$. What is BI?

(B)
$$5 + \sqrt{26} + 3\sqrt{3}$$
 (C) $3\sqrt{26}$ **(D)** $\frac{2}{3}\sqrt{546}$ **(E)** $9\sqrt{3}$

(C)
$$3\sqrt{26}$$

(D)
$$\frac{2}{3}\sqrt{546}$$

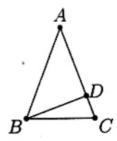
(E)
$$9\sqrt{3}$$

2018A

- 18. Triangle ABC with AB = 50 and AC = 10 has area 120. Let D be the midpoint of \overline{AB} , and let E be the midpoint of \overline{AC} . The angle bisector of $\angle BAC$ intersects \overline{DE} and \overline{BC} at F and G, respectively. What is the area of quadrilateral FDBG?
 - (A) 60
- **(B)** 65
- **(C)** 70
- **(D)** 75
- **(E)** 80

1999

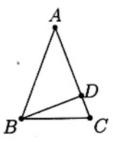
19. Consider all triangles ABC satisfying the following conditions: AB = AC, D is a point on \overline{AC} for which $\overline{BD} \perp \overline{AC}$, AD and CD are integers, and $BD^2 = 57$. Among all such triangles, the smallest possible value of AC is



- (A) 9
- **(B)** 10
- (C) 11
- **(D)** 12
- (E) 13

1999

19. Consider all triangles ABC satisfying the following conditions: AB = AC, D is a point on \overline{AC} for which $\overline{BD} \perp \overline{AC}$, AD and CD are integers, and $BD^2 = 57$. Among all such triangles, the smallest possible value of AC is



- (A) 9
- **(B)** 10
- (C) 11
- **(D)** 12
- (E) 13

2007A

- 19. Triangles ABC and ADE have areas 2007 and 7002, respectively, with B =(0,0), C = (223,0), D = (680,380), and E = (689,389). What is the sum of all possible x-coordinates of A?
 - **(A)** 282
- **(B)** 300
- **(C)** 600
- **(D)** 900
- **(E)** 1200
- 2013A 19. In $\triangle ABC$, AB = 86, and AC = 97. A circle with center A and radius AB intersects \overline{BC} at points B and X. Moreover \overline{BX} and \overline{CX} have integer lengths. What is BC?
 - **(A)** 11
- **(B)** 28
- **(C)** 33
- **(D)** 61
- **(E)** 72

2014A 19. There are exactly N distinct rational numbers k such that |k| < 200 and

$$5x^2 + kx + 12 = 0$$

has at least one integer solution for x. What is N?

- (**A**) 6
- **(B)** 12
- **(C)** 24
- **(D)** 48
- **(E)** 78

2015B

19. In $\triangle ABC$, $\angle C = 90^{\circ}$ and AB = 12. Squares ABXY and ACWZ are constructed outside of the triangle. The points X, Y, Z, and W lie on a circle. What is the perimeter of the triangle?

- **(A)** $12 + 9\sqrt{3}$ **(B)** $18 + 6\sqrt{3}$ **(C)** $12 + 12\sqrt{2}$
- **(D)** 30
- **(E)** 32

2002B

20. Let $\triangle XOY$ be a right-angled triangle with $m \angle XOY = 90^{\circ}$. Let M and N be the midpoints of legs OX and OY, respectively. Given that XN = 19 and YM = 22, find XY.

- (A) 24
- **(B)** 26
- **(C)** 28
- **(D)** 30
- **(E)** 32

20. Triangle ABC has AC = 3, BC = 4, and AB = 5. Point D is on \overline{AB} , and \overline{CD} 2008A bisects the right angle. The inscribed circles of $\triangle ADC$ and $\triangle BCD$ have radii r_a and r_b , respectively. What is r_a/r_b ?

- (A) $\frac{1}{28}(10 \sqrt{2})$ (B) $\frac{3}{56}(10 \sqrt{2})$ (C) $\frac{1}{14}(10 \sqrt{2})$ (D) $\frac{5}{56}(10 \sqrt{2})$ (E) $\frac{3}{28}(10 \sqrt{2})$

2009A

20. Convex quadrilateral ABCD has AB = 9 and CD = 12. Diagonals \overline{AC} and BD intersect at E, AC = 14, and $\triangle AED$ and $\triangle BEC$ have equal areas. What is AE?

- (A) $\frac{9}{2}$ (B) $\frac{50}{11}$ (C) $\frac{21}{4}$ (D) $\frac{17}{3}$ (E) 6

2011B

- 20. Triangle ABC has AB = 13, BC = 14, and AC = 15. The points D, E, and F are the midpoints of \overline{AB} , \overline{BC} , and \overline{AC} respectively. Let $X \neq E$ be the intersection of the circumcircles of $\triangle BDE$ and $\triangle CEF$. What is XA + XB +XC?

- (A) 24 (B) $14\sqrt{3}$ (C) $\frac{195}{8}$ (D) $\frac{129\sqrt{7}}{14}$ (E) $\frac{69\sqrt{2}}{4}$

2015A

- 20. Isosceles triangles T and T' are not congruent but have the same area and the same perimeter. The sides of T have lengths of 5, 5, and 8, while those of T'have lengths a, a, and b. Which of the following numbers is closest to b?
 - (A) 3
- **(B)** 4 **(C)** 5 **(D)** 6
- **(E)** 8
- 20. Triangle ABC is an isosceles right triangle with AB = AC = 3. Let 2018A M be the midpoint of hypotenuse \overline{BC} . Points I and E lie on sides \overline{AC} and \overline{AB} , respectively, so that AI > AE and AIME is a cyclic quadrilateral. Given that triangle EMI has area 2, the length CIcan be written as $\frac{a-\sqrt{b}}{c}$, where a, b, and c are positive integers and b is not divisible by the square of any prime. What is the value of a+b+c?
 - (A) 9

- **(B)** 10 **(C)** 11 **(D)** 12 **(E)** 13

2018B

- 20. Let ABCDEF be a regular hexagon with side length 1. Denote by X, Y, and Z the midpoints of sides \overline{AB} , \overline{CD} , and \overline{EF} , respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of $\triangle ACE$ and $\triangle XYZ$?
- (A) $\frac{3}{8}\sqrt{3}$ (B) $\frac{7}{16}\sqrt{3}$ (C) $\frac{15}{32}\sqrt{3}$ (D) $\frac{1}{2}\sqrt{3}$ (E) $\frac{9}{16}\sqrt{3}$