UNIT 22 QUESTIONS 16-20

COMPLEX

- 2004B 16. A function f is defined by $f(z) = i\overline{z}$, where $i = \sqrt{-1}$ and \overline{z} is the complex conjugate of z. How many values of z satisfy both |z| = 5 and f(z) = z?
 - **(A)** 0
- **(B)** 1
- (C) 2
- **(D)** 4
- **(E)** 8

2018B

- 16. The solutions to the equation $(z+6)^8 = 81$ are connected in the complex plane to form a convex regular polygon, three of whose vertices are labeled A, B, and C. What is the least possible area of $\triangle ABC$?
- (A) $\frac{1}{6}\sqrt{6}$ (B) $\frac{3}{2}\sqrt{2} \frac{3}{2}$ (C) $2\sqrt{3} 2\sqrt{2}$ (D) $\frac{1}{2}\sqrt{2}$

- **(E)** $\sqrt{3}-1$
- 2017A 17. There are 24 different complex numbers z such that $z^{24} = 1$. For how many of these is z^6 a real number?

- (A) 0 (B) 4 (C) 6 (D) 12 (E) 24

- 2008B
- 19. A function f is defined by $f(z) = (4+i)z^2 + \alpha z + \gamma$ for all complex numbers z, where α and γ are complex numbers and $i^2 = -1$. Suppose that f(1) and f(i)are both real. What is the smallest possible value of $|\alpha| + |\gamma|$?
 - **(A)** 1
- **(B)** $\sqrt{2}$
- (C) 2 (D) $2\sqrt{2}$
- **(E)** 4