UNIT 21 QUESTIONS 16-20

TRIG

- 17. Let P(x) be a polynomial such that when P(x) is divided by x-19, the 1999 remainder is 99, and when P(x) is divided by x - 99, the remainder is 19. What is the remainder when P(x) is divided by (x-19)(x-99)?
- (A) -x + 80 (B) x + 80 (C) -x + 118 (D) x + 118
- (\mathbf{E}) 0
- 17. Suppose that $\sin a + \sin b = \sqrt{5/3}$ and $\cos a + \cos b = 1$. What is $\cos(a b)$? 2007A
 - (A) $\sqrt{\frac{5}{3}} 1$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{2}{3}$ (E) 1

- 1999
- 18. How many zeros does $f(x) = \cos(\log(x))$ have on the interval 0 < x < 1?
 - $(\mathbf{A}) 0$

- (B) 1 (C) 2 (D) 10 (E) infinitely many

- 19. Rhombus ABCD, with side length 6, is rolled to form a cylinder of volume 6 by taping \overline{AB} to \overline{DC} . What is $\sin(\angle ABC)$?

- (A) $\frac{\pi}{9}$ (B) $\frac{1}{2}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$ (E) $\frac{\sqrt{3}}{2}$
- 2014A 20. In $\triangle BAC$, $\angle BAC = 40^{\circ}$, AB = 10, and AC = 6. Points D and E lie on \overline{AB} and \overline{AC} , respectively. What is the minimum possible value of BE + DE + CD?
 - **(A)** $6\sqrt{3} + 3$ **(B)** $\frac{27}{2}$ **(C)** $8\sqrt{3}$ **(D)** 14 **(E)** $3\sqrt{3} + 9$