UNIT 19 QUESTIONS 16-20

QUADRATICS

- 2014B 16. Let P be a cubic polynomial with P(0) = k, P(1) = 2k, and P(-1) = 3k. What is P(2) + P(-2)?

- **(A)** 0 **(B)** k **(C)** 6k **(D)** 7k **(E)** 14k
- 17. Let P(x) be a polynomial such that when P(x) is divided by x-19, the 1999 remainder is 99, and when P(x) is divided by x - 99, the remainder is 19. What is the remainder when P(x) is divided by (x-19)(x-99)?
- (A) -x + 80 (B) x + 80 (C) -x + 118 (D) x + 118
- (\mathbf{E}) 0

2004B 17. For some real numbers a and b, the equation

$$8x^3 + 4ax^2 + 2bx + a = 0$$

has three distinct positive roots. If the sum of the base-2 logarithms of the roots is 5, what is the value of a?

- (A) -256
- **(B)** -64
- (C) -8
- **(D)** 64
- **(E)** 256

2004B

18. Points A and B are on the parabola $y = 4x^2 + 7x - 1$, and the origin is the midpoint of \overline{AB} . What is the length of \overline{AB} ?

(A)
$$2\sqrt{5}$$

(A)
$$2\sqrt{5}$$
 (B) $5 + \frac{\sqrt{2}}{2}$ (C) $5 + \sqrt{2}$ (D) 7 (E) $5\sqrt{2}$

(C)
$$5 + \sqrt{2}$$

2007A

- 18. The polynomial $f(x) = x^4 + ax^3 + bx^2 + cx + d$ has real coefficients, and f(2i) =f(2+i) = 0. What is a + b + c + d?

- (A) 0 (B) 1 (C) 4 (D) 9 (E) 16

2011A

- 18. Suppose that |x+y|+|x-y|=2. What is the maximum possible value of $x^2 - 6x + y^2$?

- (A) 5 (B) 6 (C) 7 (D) 8 (E) 9

2015A

- 18. The zeros of the function $f(x) = x^2 ax + 2a$ are integers. What is the sum of the possible values of a?
 - (A) 7
- **(B)** 8 **(C)** 16 **(D)** 17
- **(E)** 18

2003A

- 19. A parabola with equation $y = ax^2 + bx + c$ is reflected about the x-axis. The parabola and its reflection are translated horizontally five units in opposite directions to become the graphs of y = f(x) and y = g(x), respectively. Which of the following describes the graph of y = (f + g)(x)?
 - (A) a parabola tangent to the x-axis
 - **(B)** a parabola not tangent to the x-axis (C) a horizontal line
 - (D) a non-horizontal line (E) the graph of a cubic function

2001

- 19. The polynomial $P(x) = x^3 + ax^2 + bx + c$ has the property that the mean of its zeros, the product of its zeros, and the sum of its coefficients are all equal. If the y-intercept of the graph of y = P(x) is 2, what is b?
 - **(A)** -11 **(B)** -10 **(C)** -9 **(D)** 1 **(E)** 5

2009B

- 19. For each positive integer n, let $f(n) = n^4 360n^2 + 400$. What is the sum of all values of f(n) that are prime numbers?
 - (B) 796 (C) 798 (D) 800 (E) 802 **(A)** 794

2011A

- 20. Let $f(x) = ax^2 + bx + c$, where a, b, and c are integers. Suppose that f(1) = 0, 50 < f(7) < 60, 70 < f(8) < 80, and 5000k < f(100) < 5000(k+1) for someinteger k. What is k?
 - **(B)** 2 **(C)** 3 **(D)** 4 **(E)** 5 **(A)** 1

2012A

20. Consider the polynomial

$$P(x) = \prod_{k=0}^{10} (x^{2^k} + 2^k) = (x+1)(x^2+2)(x^4+4)\cdots(x^{1024}+1024).$$

The coefficient of x^{2012} is equal to 2^a . What is a?

- (A) 5

- **(B)** 6 **(C)** 7 **(D)** 10
- **(E)** 24