UNIT 1 EXERCISES 16-20

2D GEOMETRY

2003B 16. Three semicircles of radius 1 are constructed on diameter \overline{AB} of a semicircle of radius 2. The centers of the small semicircles divide \overline{AB} into four line segments of equal length, as shown. What is the area of the shaded region that lies within the large semicircle but outside the smaller semicircles?

(A)
$$\pi - \sqrt{3}$$

(B)
$$\pi - \sqrt{2}$$

(C)
$$\frac{\pi + \sqrt{2}}{2}$$

(A)
$$\pi - \sqrt{3}$$
 (B) $\pi - \sqrt{2}$ (C) $\frac{\pi + \sqrt{2}}{2}$ (D) $\frac{\pi + \sqrt{3}}{2}$

(E)
$$\frac{7}{6}\pi - \frac{\sqrt{3}}{2}$$

2005A 16. Three circles of radius s are drawn in the first quadrant of the xy-plane. The first circle is tangent to both axes, the second is tangent to the first circle and the x-axis, and the third is tangent to the first circle and the y-axis. A circle of radius r > s is tangent to both axes and to the second and third circles. What is r/s?

(A) 5

(B) 6

(D) 9

(E) 10

2006A

16. Circles with centers A and B have radii 3 and 8, respectively. A common internal tangent intersects the circles at C and D, respectively. Lines AB and CD intersect at E, and AE = 5. What is CD?

(A) 13

(B) $\frac{44}{3}$

(C) $\sqrt{221}$ (D) $\sqrt{255}$

(E) $\frac{55}{3}$

2017A 16. In the figure below, semicircles with centers at A and B and with radii 2 and 1, respectively, are drawn in the interior of, and sharing bases with, a semicircle with diameter \overline{JK} . The two smaller semicircles are externally tangent to each other and internally tangent to the largest semicircle. A circle centered at P is drawn externally tangent to the two smaller semicircles and internally tangent to the largest semicircle. What is the radius of the circle centered at P?

- (E) $\frac{11}{12}$

2001

17. A point P is selected at random from the interior of the pentagon with vertices $A = (0, 2), B = (4, 0), C = (2\pi +$ $(1,0), D = (2\pi + 1,4), \text{ and } E = (0,4).$ What is the probability that $\angle APB$ is obtuse?

(A) $\frac{1}{5}$ (B) $\frac{1}{4}$ (C) $\frac{5}{16}$ (D) $\frac{3}{8}$ (E) $\frac{1}{2}$

2003A

- 17. Square ABCD has sides of length 4, and M is the midpoint of \overline{CD} . A circle with radius 2 and center M intersects a circle with radius 4 and center A at points P and D. What is the distance from P to \overline{AD} ?
 - **(A)** 3

- (B) $\frac{16}{5}$ (C) $\frac{13}{4}$ (D) $2\sqrt{3}$ (E) $\frac{7}{2}$

17. Square ABCD has side length s, a circle centered at E has radius r, and r and s are both rational. The circle passes through D, and D lies on \overline{BE} . Point F lies on the circle, on the same side of \overline{BE} as A. Segment AF is tangent to the circle, and $AF = \sqrt{9 + 5\sqrt{2}}$. What is r/s?

- (A) $\frac{1}{2}$ (B) $\frac{5}{9}$ (C) $\frac{3}{5}$ (D) $\frac{5}{3}$ (E) $\frac{9}{5}$

- 17. In $\triangle ABC$ shown in the figure, AB = 7, BC = 8, CA = 9, and \overline{AH} is an 2016B altitude. Points D and E lie on sides \overline{AC} and \overline{AB} , respectively, so that \overline{BD} and \overline{CE} are angle bisectors, intersecting \overline{AH} at Q and P, respectively. What is PQ?

- (A) 1 (B) $\frac{5}{8}\sqrt{3}$ (C) $\frac{4}{5}\sqrt{2}$ (D) $\frac{8}{15}\sqrt{5}$ (E) $\frac{6}{5}$

2001

18. A circle centered at A with a radius of 1 and a circle centered at B with a radius of 4 are externally tangent. A third circle is tangent to the first two and to one of their common external tangents as shown. The radius of the third circle is

(A) $\frac{1}{3}$ (B) $\frac{2}{5}$ (C) $\frac{5}{12}$ (D) $\frac{4}{9}$ (E) $\frac{1}{2}$

18. Square ABCD has side length 2. A semicircle with diameter \overline{AB} is constructed 2004A inside the square, and the tangent to the semicircle from C intersects side \overline{AD} at E. What is the length of CE?

(A) $\frac{2+\sqrt{5}}{2}$

(B) $\sqrt{5}$

(C) $\sqrt{6}$

(D) $\frac{5}{2}$ **(E)** $5 - \sqrt{5}$

- 2004A
- 19. Circles A, B, and C are externally tangent to each other and internally tangent to circle D. Circles B and C are congruent. Circle A has radius 1 and passes through the center of D. What is the radius of circle B?

- (A) $\frac{2}{3}$ (B) $\frac{\sqrt{3}}{2}$ (C) $\frac{7}{8}$
- (D) $\frac{8}{9}$ (E) $\frac{1+\sqrt{3}}{3}$

- 2006A
- 19. Circles with centers (2,4) and (14,9) have radii 4 and 9, respectively. The equation of a common external tangent to the circles can be written in the form y = mx + b with m > 0. What is b?

- (A) $\frac{908}{119}$ (B) $\frac{909}{119}$

- (C) $\frac{130}{17}$ (D) $\frac{911}{119}$