UNIT 5 EXERCISES 11-15

CO-ORD

- 2011B 11. A frog located at (x, y), with both x and y integers, makes successive jumps of length 5 and always lands on points with integer coordinates. Suppose that the frog starts at (0,0) and ends at (1,0). What is the smallest possible number of jumps the frog makes?
 - **(A)** 2
- **(B)** 3
- (C) 4 (D) 5
- **(E)** 6

2015B

- 11. The line 12x + 5y = 60 forms a triangle with the coordinate axes. What is the sum of the lengths of the altitudes of this triangle?
 - **(A)** 20
- (B) $\frac{360}{17}$ (C) $\frac{107}{5}$ (D) $\frac{43}{2}$ (E) $\frac{281}{13}$

2016B

- 11. How many squares whose sides are parallel to the axes and whose vertices have coordinates that are integers lie entirely within the region bounded by the line $y = \pi x$, the line y = -0.1, and the line x = 5.1?
 - (A) 30
- **(B)** 41
- (C) 45
- **(D)** 50
- (E) 57

1999

- 12. What is the maximum number of points of intersection of the graphs of two different fourth degree polynomial functions y = p(x) and y = q(x), each with leading coefficient 1?
 - (A) 1
- **(B)** 2
- (C) 3 (D) 4
- **(E)** 8

- 2004A
- 12. Let A = (0,9) and B = (0,12). Points A' and B' are on the line y = x, and $\overline{AA'}$ and $\overline{BB'}$ intersect at C=(2,8). What is the length of $\overline{A'B'}$?
 - (A) 2
- **(B)** $2\sqrt{2}$
- **(C)** 3
- **(D)** $2 + \sqrt{2}$
- **(E)** $3\sqrt{2}$

- 12. A line passes through A(1,1) and B(100,1000). How many other points with integer coordinates are on the line and strictly between A and B?
 - **(A)** 0
- **(B)** 2
- **(C)** 3
- **(D)** 8
- **(E)** 9

- 2012A 12. A square region ABCD is externally tangent to the circle with equation $x^2+y^2=$ 1 at the point (0,1) on the side CD. Vertices A and B are on the circle with equation $x^2 + y^2 = 4$. What is the side length of this square?

- (A) $\frac{\sqrt{10}+5}{10}$ (B) $\frac{2\sqrt{5}}{5}$ (C) $\frac{2\sqrt{2}}{3}$ (D) $\frac{2\sqrt{19}-4}{5}$ (E) $\frac{9-\sqrt{17}}{5}$

- 2015A 12. The parabolas $y = ax^2 2$ and $y = 4 bx^2$ intersect the coordinate axes in exactly four points, and these four points are the vertices of a kite of area 12. What is a + b?
 - (**A**) 1
- **(B)** 1.5
- (C) 2
- **(D)** 2.5
- **(E)** 3

2001

- 13. The parabola with equation $y = ax^2 + bx + c$ and vertex (h, k) is reflected about the line y = k. This results in the parabola with equation $y = dx^2 + ex + f$. Which of the following equals a + b + c + d + e + f?
 - (A) 2b
- **(B)** 2c
- (C) 2a + 2b
- **(D)** 2h
- (E) 2k

2004A

- 13. Let S be the set of points (a, b) in the coordinate plane, where each of a and b may be -1, 0, or 1. How many distinct lines pass through at least two members of S?
 - **(A)** 8
- **(B)** 20
- **(C)** 24
- **(D)** 27
- **(E)** 36

2007A

- 13. A piece of cheese is located at (12, 10) in a coordinate plane. A mouse is at (4,-2) and is running up the line y=-5x+18. At the point (a,b) the mouse starts getting farther from the cheese rather than closer to it. What is a + b?
 - (A) 6
- **(B)** 10
- **(C)** 14
- **(D)** 18
- **(E)** 22

2010A

- 13. For how many integer values of k do the graphs of $x^2 + y^2 = k^2$ and xy = k not intersect?
 - **(A)** 0
- **(B)** 1
- **(C)** 2
- **(D)** 4
- **(E)** 8

2013A

- 13. Let points A = (0,0), B = (1,2), C = (3,3), and D = (4,0). Quadrilateral ABCD is cut into equal area pieces by a line passing through A. This line intersects \overline{CD} at point $(\frac{p}{q}, \frac{r}{s})$, where these fractions are in lowest terms. What is p+q+r+s?
 - (A) 54
- **(B)** 58
- **(C)** 62
- **(D)** 70
- **(E)** 75

2008A

- 14. What is the area of the region defined by the inequality $|3x-18|+|2y+7|\leq 3$?

- (A) 3 (B) $\frac{7}{2}$ (C) 4 (D) $\frac{9}{2}$ (E) 5

2009A

- 14. A triangle has vertices (0,0), (1,1), and (6m,0), and the line y=mx divides the triangle into two triangles of equal area. What is the sum of all possible values of m?

 - (A) $-\frac{1}{3}$ (B) $-\frac{1}{6}$ (C) $\frac{1}{6}$ (D) $\frac{1}{3}$ (E) $\frac{1}{2}$