UNIT 24 EXERCISES 11-15

TRIG

- 2010B 13. In $\triangle ABC$, $\cos(2A-B)+\sin(A+B)=2$ and AB=4. What is BC?

- (A) $\sqrt{2}$ (B) $\sqrt{3}$ (C) 2 (D) $2\sqrt{2}$ (E) $2\sqrt{3}$

- 14. A segment through the focus F of a parabola with vertex V is perpendicular to 2011B \overline{FV} and intersects the parabola in points A and B. What is $\cos(\angle AVB)$?

 - (A) $-\frac{3\sqrt{5}}{7}$ (B) $-\frac{2\sqrt{5}}{5}$ (C) $-\frac{4}{5}$ (D) $-\frac{3}{5}$ (E) $-\frac{1}{2}$

1999

- 15. Let x be a real number such that $\sec x \tan x = 2$. Then $\sec x + \tan x = 2$
- (A) 0.1 (B) 0.2 (C) 0.3 (D) 0.4 (E) 0.5

- 2006A 15. Suppose $\cos x = 0$ and $\cos(x+z) = 1/2$. What is the smallest possible positive value of z?

- (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{2}$ (D) $\frac{5\pi}{6}$ (E) $\frac{7\pi}{6}$

- 2017A 15. Let $f(x) = \sin x + 2\cos x + 3\tan x$, using radian measure for the variable x. In what interval does the smallest positive value of x for which f(x) = 0 lie?
- **(A)** (0,1) **(B)** (1,2) **(C)** (2,3) **(D)** (3,4) **(E)** (4,5)