UNIT 16 EXERCISES 21-25

FUNCTIONS

2011A 21. Answer (D): Let the arithmetic and geometric means of x and y be 10a + b and 10b + a, respectively. Then

$$\frac{x+y}{2} = 10a + b \Rightarrow (x+y)^2 = 400a^2 + 80ab + 4b^2$$

and

$$\sqrt{xy} = 10b + a \Rightarrow xy = 100b^2 + 20ab + a^2$$
,

SO

$$(x-y)^2 = (x+y)^2 - 4xy = 396(a^2 - b^2) = 11 \cdot 6^2 \cdot (a+b)(a-b)$$

Because x and y are distinct, a and b are distinct digits, and the last expression is a perfect square if and only if a+b=11 and a-b is a perfect square. The cases a-b=1, 4, and 9 give solutions (a,b)=(6,5), (7.5,3.5), and (10,1), respectively. Because a and b are digits only the first solution is valid. Thus $(x-y)^2=11\cdot 6^2\cdot 11=66^2$ and |x-y|=66. Note that the given conditions are satisfied if $\{x,y\}=\{32,98\}$.

2007A 22. **Answer (D):** If $n \le 2007$, then $S(n) \le S(1999) = 28$. If $n \le 28$, then $S(n) \le S(28) = 10$. Therefore if n satisfies the required condition it must also satisfy

$$n > 2007 - 28 - 10 = 1969.$$

In addition, n, S(n), and S(S(n)) all leave the same remainder when divided by 9. Because 2007 is a multiple of 9, it follows that n, S(n), and S(S(n)) must all be multiples of 3. The required condition is satisfied by 4 multiples of 3 between 1969 and 2007, namely 1977, 1980, 1983, and 2001.

Note: There appear to be many cases to check, that is, all the multiples of 3 between 1969 and 2007. However, for $1987 \le n \le 1999$, we have $n + S(n) \ge 1990 + 19 = 2009$, so these numbers are eliminated. Thus we need only check 1971, 1974, 1977, 1980, 1983, 1986, 2001, and 2004.

23. **Answer (D):** Let (h, k) be the vertex of the graph of f. Because the graph of f intersects the x-axis twice, we can assume that $f(x) = a(x - h)^2 + k$ with $\frac{-k}{a} > 0$. Let $s = \sqrt{\frac{-k}{a}}$; then the x-intercepts of the graph of f are $h \pm s$. Because $g(x) = -f(100 - x) = -a(100 - x - h)^2 - k$, it follows that the x-intercepts of the graph of g are $100 - h \pm s$.

The graph of g contains the point (h, k); thus

2009A

$$k = f(h) = g(h) = -a(100 - 2h)^2 - k,$$

from which $h = 50 \pm \frac{\sqrt{2}}{2}s$. Regardless of the sign in the expression for h, the four x-intercepts in order are

$$50 - s\left(1 + \frac{\sqrt{2}}{2}\right) < 50 - s\left(1 - \frac{\sqrt{2}}{2}\right) < 50 + s\left(1 - \frac{\sqrt{2}}{2}\right) < 50 + s\left(1 + \frac{\sqrt{2}}{2}\right).$$

Because $x_3 - x_2 = 150$, it follows that $150 = s(2 - \sqrt{2})$, that is $s = 150 \left(1 + \frac{\sqrt{2}}{2}\right)$. Therefore $x_4 - x_1 = s(2 + \sqrt{2}) = 450 + 300\sqrt{2}$, and then m + n + p = 450 + 300 + 2 = 752.

OR

The graphs of f and g intersect the x-axis twice each. By symmetry, and because the graph of g contains the vertex of f, we can assume x_1 and x_3 are the roots

of f, and x_2 and x_4 are the roots of g. A point (p,q) is on the graph of f if and only if (100-p,-q) is on the graph of g, so the two graphs are reflections of each other with respect to the point (50,0). Thus $x_2+x_3=x_1+x_4=100$, and since $x_3-x_2=150$, it follows that $x_2=-25$ and $x_3=125$. The average of x_1 and $x_3=125$ is h. It follows that $x_1=2h-125$, from which $x_4=100-x_1=225-2h$, and $x_4-x_1=350-4h$.

Moreover, $f(x) = a(x - x_1)(x - x_3) = a(x + 125 - 2h)(x - 125)$ and g(x) = -f(100 - x) = -a(x + 25)(x + 2h - 225). The vertex of the graph of f lies on the graph of f; thus

$$1 = \frac{f(h)}{g(h)} = \frac{(125 - h)(h - 125)}{-(h + 25)(3h - 225)},$$

from which $h = -25 \pm 75\sqrt{2}$. However, $h < x_2 < 0$; thus $h = -25 - 75\sqrt{2}$. Therefore $x_4 - x_1 = 450 + 300\sqrt{2}$ and then $m + n + p = 450 + 300 + \frac{9 - 759}{\text{Created with iDroo.com}}$

2009A 24. **Answer (E):** Define the *k*-iterated logarithm as follows: $\log_2^1 x = \log_2 x$ and $\log_2^{k+1} x = \log_2(\log_2^k x)$ for $k \ge 1$. Because $\log_2 T(n+1) = T(n)$ for $n \ge 1$, it follows that $\log_2 A = T(2009) \log_2 T(2009) = T(2009) T(2008)$ and $\log_2 B = A \log_2 T(2009) = A \cdot T(2008)$. Then $\log_2^2 B = \log_2 A + \log_2 T(2008) = T(2009) T(2008) + T(2007)$. Now,

$$\log_2^3 B > \log_2(T(2009)T(2008)) > \log_2 T(2009) = T(2008),$$

and recursively for $k \geq 1$,

$$\log_2^{k+3} B > T(2008 - k).$$

In particular $\log_2^{2010} B > T(1) = 2$, and then $\log_2^{2012} B > 0$. Thus $\log_2^{2013} B$ is defined.

On the other hand, because T(2007) < T(2008)T(2009) and 1 + T(2007) < T(2008), it follows that

$$\begin{split} \log_2^3 B &< \log_2 \left(2T(2008)T(2009) \right) = 1 + T(2007) + T(2008) < 2T(2008) \text{ and} \\ \log_2^4 B &< \log_2 \left(2T(2008) \right) = 1 + T(2007) < T(2008). \end{split}$$

Applying \log_2 recursively for $k \geq 1$ we get

$$\log_2^{4+k} B < T(2008 - k).$$

In particular $\log_2^{2011} B < T(1) = 2$, and then $\log_2^{2013} B < 0$. Thus $\log_2^{2014} B$ is undefined.

2012B

24. **Answer (D):** Let $S_N = (f_1(N), f_2(N), f_3(N), \ldots)$. If N_1 divides N_2 , then $f_1(N_1)$ divides $f_1(N_2)$. Thus S_{N_2} is unbounded if S_{N_1} is unbounded. Call N essential if S_N is unbounded and $N \leq 400$ is not divisible by any smaller number n such that S_n is unbounded. Assume $N = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ is essential. If $e_j = 1$ for some j, then $f_1(N) = f_1(\frac{N}{p_j})$. Let $n = \frac{N}{p_j}$ and note that S_N and S_n coincide after the first term and consequently S_n is unbounded. This contradicts the fact that N is essential. Thus $e_j \geq 2$ for all $1 \leq j \leq k$. Moreover, $(p_1 p_2 \cdots p_k)^2 \leq p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} = N \leq 400$; thus $p_1 p_2 \cdots p_k \leq \sqrt{400} = 20$. Because $2 \cdot 3 \cdot 5 > 20$ it follows that $k \leq 2$.

First analyze the case when $n = 2^a \cdot 3^b$. In that case $f_2(n) = f_1(2^{2b-2} \cdot 3^{a-1}) = 2^{2a-4} \cdot 3^{2b-3}$; thus S_n is unbounded if and only if $a \ge 5$ or $b \ge 4$, and n is essential if and only if $n = 2^5$ or $n = 3^4$.

If k=1, then $N=p^e$ for some prime $p\leq 19$. The cases p=2 or p=3 have been considered before. If p=5, then $f_1(5^a)=2^{a-1}\cdot 3^{a-1}$ and because $a\leq 3$, no power of 5 in the given range is essential. If p=7, then $f_1(7^a)=2^{3a-3}$, and thus $N=7^3$ is essential. If $p\geq 11$, then $p^3>400$. Because $f_1(11^2)=2^2\cdot 3$, $f_2(13^2)=f_1(2\cdot 7)=1$, $f_1(17^2)=2\cdot 3^2$, and $f_2(19^2)=f_1(2^2\cdot 5)=3$, no powers of 11, 13, 17, or 19 are essential.

If k=2, then the only possible pairs of primes (p_1,p_2) are (2,3), (2,5), (2,7), and (3,5). The pair (2,3) was analyzed before and it yields no essential N. If $N=2^a\cdot 5^b\leq 400$ is essential, then $2\leq a\leq 4$ and b=2. Moreover $f_1(N)=2\cdot 3^a$, so a=4 and thus only $N=2^4\cdot 5^2$ is essential in this case. If $(p_1,p_2)=(2,7)$ or (3,5) and $N=p_1^{e_1}p_2^{e_2}\leq 400$ is essential, then $N\in\{2^2\cdot 7^2,2^3\cdot 7^2,3^2\cdot 5^2\}$. Because $f_1(2^2\cdot 7^2)=2^3\cdot 3$, $f_1(2^3\cdot 7^2)=2^3\cdot 3^2$, and $f_1(3^2\cdot 5^2)=2^3\cdot 3$, it follows that there are no essential N in this case.

Therefore the only essential values of N are $2^5=32$, $3^4=81$, $7^3=343$, and $2^4 \cdot 5^2=400$. These values have $\lfloor \frac{400}{32} \rfloor = 12$, $\lfloor \frac{400}{81} \rfloor = 4$, $\lfloor \frac{400}{343} \rfloor = 1$, and $\lfloor \frac{400}{400} \rfloor = 1$ multiples, respectively, in the range $1 \leq N \leq 400$. Because there are no common multiples, the required answer is 12+4+1+1=18.

Created with iDroo.com

2002B 25. (E) Note that

$$f(x) + f(y) = x^2 + 6x + y^2 + 6y + 2 = (x+3)^2 + (y+3)^2 - 16$$

and

$$f(x) - f(y) = x^2 - y^2 + 6(x - y) = (x - y)(x + y + 6).$$

The given conditions can be written as

$$(x+3)^2 + (y+3)^2 \le 16$$
 and $(x-y)(x+y+6) \le 0$.

The first inequality describes the region on and inside the circle of radius 4 with center (-3, -3). The second inequality can be rewritten as

$$(x - y \ge 0 \text{ and } x + y + 6 \le 0)$$
 or $(x - y \le 0 \text{ and } x + y + 6 \ge 0)$.

Each of these inequalities describes a half-plane bounded by a line that passes through (-3, -3) and has slope 1 or -1. Thus, the set R is the shaded region in the following diagram, and its area is half the area of the circle, which is $8\pi \approx 25.13$.

2003A

25. (C) The domain of f is $\{x \mid ax^2 + bx \ge 0\}$. If a = 0, then for every positive value of b, the domain and range of f are each equal to the interval $[0, \infty)$, so 0 is a possible value of a.

If $a \neq 0$, the graph of $y = ax^2 + bx$ is a parabola with x-intercepts at x = 0 and x = -b/a. If a > 0, the domain of f is $(-\infty, -b/a] \cup [0, \infty)$, but the range of f cannot contain negative numbers. If a < 0, the domain of f is [0, -b/a]. The maximum value of f occurs halfway between the x-intercepts, at x = -b/2a, and

$$f\left(-\frac{b}{2a}\right) = \sqrt{a\left(\frac{b^2}{4a^2}\right) + b\left(-\frac{b}{2a}\right)} = \frac{b}{2\sqrt{-a}}.$$

Hence, the range of f is $[0, b/2\sqrt{-a}]$. For the domain and range to be equal, we must have

$$-\frac{b}{a} = \frac{b}{2\sqrt{-a}} \quad \text{so} \quad 2\sqrt{-a} = -a.$$

The only solution is a = -4. Thus there are two possible values of a, and they are a = 0 and a = -4.

2012A

25. **Answer (C):** Because $-1 \le 2\{x\} - 1 \le 1$ it follows that $0 \le f(x) \le 1$ for all $x \in \mathbb{R}$. Thus $0 \le nf(xf(x)) \le n$, and therefore all real solutions x of the required equation are in the interval [0, n]. Also f(x) is periodic with period 1, f(x) = 1 - 2x if $0 \le x \le \frac{1}{2}$, and f(x) = 2x - 1 if $\frac{1}{2} \le x \le 1$. Thus the graph of y = f(x) for $x \ge 0$ consists of line segments joining the points with coordinates $(k, 1), (k + \frac{1}{2}, 0), (k + 1, 1)$ for integers $k \ge 0$ as shown.

Let a be an integer such that $0 \le a \le n-1$. Consider the interval $[a, a+\frac{1}{2})$. If $x \in [a, a+\frac{1}{2})$, then $f(x) = |2\{x\}-1| = |2(x-a)-1| = 1+2a-2x$ and thus g(x) := xf(x) = x(1+2a-2x). Suppose $a \ge 1$ and $a \le x < y < a+\frac{1}{2}$. Then $2x+2y-2a-1>2a-1\ge 1$ and so (y-x)(2x+2y-2a-1)>0, which is equivalent to g(x)=x(1+2a-2x)>y(1+2a-2y)=g(y). Thus g is strictly decreasing on $[a, a+\frac{1}{2})$ and so it maps $[a, a+\frac{1}{2})$ bijectively to (0, a]. Thus the graph of the function y=f(g(x)) on the interval $[a, a+\frac{1}{2})$ oscillates from 1 to 0 as many times as the graph of the function y=f(x) on the interval $[a, a+\frac{1}{2})$ exactly $[a, a+\frac{1}{2$

If a=0 and $x\in[a,a+\frac{1}{2})$, then g(x)=x(1-2x) satisfies $0\leq g(x)\leq\frac{1}{8}$, so $f(g(x))=1-2g(x)=4x^2-2x+1$. If $x\in[0,\frac{1}{2})$ and $n\geq 1$, then $0\leq\frac{x}{n}<\frac{1}{2n}\leq\frac{1}{2}$. Because $\frac{1}{2}\leq 1-2g(x)\leq 1$, it follows that the parabola y=f(g(x)) does not intersect any of the lines with equation $y=\frac{x}{n}$ on the interval $[0,\frac{1}{2})$.

Similarly, if $x \in [a+\frac{1}{2},a+1)$, then $f(x)=|2\{x\}-1|=|2(x-a)-1|=2x-2a-1$ and g(x):=xf(x)=x(2x-2a-1). This time if $a+\frac{1}{2} \le x < y < a+1$, then $2x+2y-2a+1 \ge 2a+1 \ge 1$ and so (x-y)(2x+2y-2a+1) < 0, which is equivalent to g(x) < g(y). Thus g is strictly increasing on $[a+\frac{1}{2},a+1)$ and so it maps $[a+\frac{1}{2},a+1)$ bijectively to [0,a+1). Thus the graph of the function y=f(g(x)) on the interval $[a+\frac{1}{2},a+1)$ oscillates as many times as the graph of y=f(x) on the interval [0,a+1). It follows that the line with equation $y=\frac{x}{n}$ intersects the graph of y=f(g(x)) on the interval $[a+\frac{1}{2},a+1)$ exactly 2(a+1)

times. Therefore the total number of intersections of the line $y = \frac{x}{n}$ and the graph of y = f(g(x)) is equal to

$$\sum_{a=0}^{n-1} (2a + 2(a+1)) = 2\sum_{a=0}^{n-1} (2a+1) = 2n^2.$$

Finally the smallest n such that $2n^2 \ge 2012$ is n = 32 because $2 \cdot 31^2 = 1922$ and $2 \cdot 32^2 = 2048$.