UNIT 11 EXERCISES 21-25

DIVISOR/LCM

2005B 21. (C) Let $n = 7^k Q$, where Q is the product of primes, none of which is 7. Let d be the number of divisors of Q. Then n has (k+1)d divisors. Also $7n = 7^{k+1}Q$, so 7n has (k+2)d divisors. Thus

$$\frac{(k+2)d}{(k+1)d} = \frac{80}{60} = \frac{4}{3}$$
 and $3(k+2) = 4(k+1)$.

Hence k=2. Note that $n=2^{19}7^2$ meets the conditions of the problem.

- 2016A 22. Answer (A): Because $lcm(x,y) = 2^3 \cdot 3^2$ and $lcm(x,z) = 2^3 \cdot 3 \cdot 5^2$, it follows that 5^2 divides z, but neither x nor y is divisible by 5. Furthermore, y is divisible by 3^2 , and neither x nor z is divisible by 3^2 , but at least one of x or z is divisible by 3. Finally, because $lcm(y,z) = 2^2 \cdot 3^2 \cdot 5^2$, at least one of y or z is divisible by 2^2 , but neither is divisible by 2^3 . However, x must be divisible by 2^3 . Thus $x = 2^3 \cdot 3^j$, $y = 2^k \cdot 3^2$, and $z = 2^m \cdot 3^n \cdot 5^2$, where max(j,n) = 1 and max(k,m) = 2. There are 3 choices for (j,n) and 5 choices for (k,m), so there are 15 possible ordered triples (x,y,z).
- 2014B 23. Answer (C): Let $n = \binom{2014}{k}$. Note that $2016 \cdot 2015 \equiv (-1)(-2) = 2 \pmod{2017}$ and $2016 \cdot 2015 \cdots (2015 k) \equiv (-1)(-2) \cdots (-(k+2)) = (-1)^k (k+2)! \pmod{2017}$. Because $n \cdot k! \cdot (2014 k)! = 2014!$, it follows that

$$n \cdot k! \cdot (2014 - k)! \cdot ((2015 - k) \cdot \cdot \cdot \cdot 2015 \cdot 2016) \cdot 2 \equiv 2014! \cdot 2015 \cdot 2016 \cdot (-1)^k (k+2)! \pmod{2017}.$$

Thus

$$2n \cdot k! \cdot 2016! \equiv (-1)^k (k+2)! \cdot 2016! \pmod{2017}.$$

Dividing by $2016! \cdot k!$, which is relatively prime to 2017, gives

$$2n \equiv (-1)^k (k+2)(k+1) \pmod{2017}$$
.

Thus $n \equiv (-1)^k {k+2 \choose 2} \pmod{2017}$. It follows that

$$S \equiv \sum_{k=0}^{62} (-1)^k {k+2 \choose 2} = 1 + \sum_{k=1}^{31} \left({2k+2 \choose 2} - {2k+1 \choose 2} \right)$$
$$= 1 + \sum_{k=1}^{31} (2k+1) = 32^2 = 1024 \pmod{2017}.$$

2016B

24. **Answer (D):** Note that $\gcd(a,b,c,d)=77$ and $\operatorname{lcm}(a,b,c,d)=n$ if and only if $\gcd(\frac{a}{77},\frac{b}{77},\frac{c}{77},\frac{d}{77})=1$ and $\operatorname{lcm}(\frac{a}{77},\frac{b}{77},\frac{c}{77},\frac{d}{77})=\frac{n}{77}$. Thus there are 77,000 ordered quadruples (a,b,c,d) such that $\gcd(a,b,c,d)=1$ and $\operatorname{lcm}(a,b,c,d)=\frac{n}{77}$. Let $m=\frac{n}{77}$ and suppose that p is a prime that divides m. Let A=A(p), $B=B(p),\ C=C(p),\ D=D(p),\$ and $M=M(p)\geq 1$ be the exponents of p such that $p^A,\ p^B,\ p^C,\ p^D,\$ and p^M are the largest powers of p that divide a,b,c,d, and m, respectively. The gcd and lcm requirements are equivalent to $\min(A,B,C,D)=0$ and $\max(A,B,C,D)=M$. For a fixed value of M, there are $(M+1)^4$ quadruples (A,B,C,D) with each entry in $\{0,1,\ldots,M\}$. There are M^4 of them for which $\min(A,B,C,D)\geq 1$, and also M^4 of them such that $\max(A,B,C,D)\leq M-1$. Finally, there are $(M-1)^4$ quadruples (A,B,C,D) such that $\min(A,B,C,D)\geq 1$ and $\max(A,B,C,D)\leq M-1$. Thus the number of quadruples such that $\min(A,B,C,D)\geq 1$ and $\max(A,B,C,D)=M$ is equal to $(M+1)^4-2M^4+(M-1)^4=12M^2+2=2(6M^2+1)$. Multiplying these quantities over all primes that divide m yields the total number of quadruples (a,b,c,d) with the required properties. Thus

$$77,\!000 = 2^3 \cdot 5^3 \cdot 7 \cdot 11 = \prod_{p \mid m} 2(6(M(p))^2 + 1).$$

Note that $6(M(p))^2 + 1$ is odd and this product must contain three factors of 2, so there must be exactly three primes that divide m. Let p_1 , p_2 , and p_3 be these primes. Note that $6 \cdot 1^2 + 1 = 7$, $6 \cdot 2^2 + 1 = 5^2$, and $6 \cdot 3^2 + 1 = 5 \cdot 11$. None of these could appear as a factor more than once because 77,000 is not divisible by 7^2 , 5^4 , or 11^2 . Moreover, the product of these three is equal to $5^3 \cdot 7 \cdot 11$. All other factors of the form $6M^2 + 1$ are greater than these three, so without loss of generality the only solution is $M(p_1) = 1$, $M(p_2) = 2$, and $M(p_3) = 3$. It follows that $m = p_1^1 p_2^2 p_3^3$, and the smallest value of m occurs when $p_1 = 5$, $p_2 = 3$, and $p_3 = 2$. Therefore the smallest possible values of m and n are $5 \cdot 3^2 \cdot 2^3 = 360$ and $77(5 \cdot 3^2 \cdot 2^3) = 27,720$, respectively.

Created with iDroo.com