UNIT 4 QUESTIONS 16-20

TRIANGLES

17. Answer (E): Triangles ABC, CDE and EFA are congruent, so △ACE is equilateral. Let X be the intersection of the lines AB and EF and define Y and Z similarly as shown in the figure. Because ABCDEF is equiangular, it follows that ∠XAF = ∠AFX = 60°. Thus △XAF is equilateral. Let H be the midpoint of XF. By the Pythagorean Theorem,

$$AE^2 = AH^2 + HE^2 = (\frac{\sqrt{3}}{2}r)^2 + (\frac{r}{2} + 1)^2 = r^2 + r + 1$$

Thus, the area of $\triangle ACE$ is

$$\frac{\sqrt{3}}{4}AE^2 = \frac{\sqrt{3}}{4}(r^2 + r + 1).$$

The area of hexagon ABCDEF is equal to

$$[XYZ] - [XAF] - [YCB] - [ZED] = \frac{\sqrt{3}}{4} \left((2r+1)^2 - 3r^2 \right) = \frac{\sqrt{3}}{4} (r^2 + 4r + 1)$$

Because $[ACE] = \frac{7}{10}[ABCDEF]$, it follows that

$$r^{2} + r + 1 = \frac{7}{10}(r^{2} + 4r + 1)$$

from which $r^2 - 6r + 1 = 0$ and $r = 3 \pm 2\sqrt{2}$. The sum of all possible values of r is 6.

17. **Answer (D):** Let the triangle's vertices in the coordinate plane be (4,0), (0,3), and (0,0), with $[0,s] \times [0,s]$ representing the unplanted portion of the field. The equation of the hypotenuse is 3x+4y-12=0, so the distance from (s,s), the corner of S closest to the hypotenuse, to this line is given by

$$\frac{|3s+4s-12|}{\sqrt{3^2+4^2}}$$
.

Setting this equal to 2 and solving for s gives $s = \frac{22}{7}$ and $s = \frac{2}{7}$, and the former is rejected because the square must lie within the triangle. The unplanted area is thus $\left(\frac{2}{7}\right)^2 = \frac{4}{49}$, and the requested fraction is

$$1 - \frac{\frac{4}{49}}{\frac{1}{2} \cdot 4 \cdot 3} = \frac{145}{147}.$$

or

Let the given triangle be described as $\triangle ABC$ with the right angle at B and AB = 3. Let D be the vertex of the square that is in the interior of the triangle, and let s be the edge length of the square. Then two sides of the square along with line segments \overline{AD} and \overline{CD} decompose $\triangle ABC$ into four regions. These regions are a triangle with base 5 and height 2, the unplanted square with side s, a right triangle with legs s and s and s and s are square with legs s and s and s are square with legs s and s are square with l

$$\frac{1}{2} \cdot 5 \cdot 2 + s^2 + \frac{1}{2}s(3-s) + \frac{1}{2}s(4-s) = 5 + \frac{7}{2}s,$$

and the area of $\triangle ABC$ is 6. Solving $5 + \frac{7}{2}s = 6$ for s gives $s = \frac{2}{7}$, and the solution concludes as above.

2012A _{18.} Answer (A):

Let a = BC, b = AC, and c = AB. Let D, E, and F be the feet of the perpendiculars from I to \overline{BC} , \overline{AC} , and \overline{AB} , respectively. Because \overline{BF} and \overline{BD} are common tangent segments to the incircle of $\triangle ABC$, it follows that BF = BD. Similarly, CD = CE and AE = AF. Thus

$$2 \cdot BD = BD + BF = (BC - CD) + (AB - AF) = BC + AB - (CE + AE)$$
$$= a + c - b = 25 + 27 - 26 = 26.$$

so BD = 13.

Let $s = \frac{1}{2}(a+b+c) = 39$ be the semiperimeter of $\triangle ABC$ and r = DI the inradius of $\triangle ABC$. The area of $\triangle ABC$ is equal to rs and also equal to $\sqrt{s(s-a)(s-b)(s-c)}$ by Heron's formula. Thus

$$r^{2} = \frac{(s-a)(s-b)(s-c)}{s} = \frac{14 \cdot 13 \cdot 12}{39} = 56.$$

Finally, by the Pythagorean Theorem applied to the right triangle BDI, it follows that

$$BI^2 = DI^2 + BD^2 = r^2 + BD^2 = 56 + 13^2 = 56 + 169 = 225,$$

so BI = 15.

18. **Answer (D):** Because AB is $\frac{5}{6}$ of AB + AC, it follows from the Angle Bisector Theorem that DF is $\frac{5}{6}$ of DE, and BG is $\frac{5}{6}$ of BC. Because trapezoids FDBG and EDBC have the same height, the area of FDBG is $\frac{5}{6}$ of the area of EDBC. Furthermore, the area of $\triangle ADE$ is $\frac{1}{4}$ of the area of $\triangle ABC$, so its area is 30, and the area of trapezoid EDBC is 120-30=90. Therefore the area of quadrilateral FDBG is $\frac{5}{6} \cdot 90=75$.

Note: The figure (not drawn to scale) shows the situation in which $\angle ACB$ is acute. In this case $BC \approx 59.0$ and $\angle BAC \approx 151^{\circ}$. It is also possible for $\angle ACB$ to be obtuse, with $BC \approx 41.5$ and $\angle BAC \approx 29^{\circ}$. These values can be calculated using the Law of Cosines and the sine formula for area.

1999

19. (C) Let DC = m and AD = n. By the Pythagorean Theorem, $AB^2 = AD^2 + DB^2$. Hence $(m+n)^2 = n^2 + 57$, which yields m(m+2n) = 57. Since m and n are positive integers, the only possibilities are m = 1, n = 28 and m = 3, n = 8. The second of these gives the least possible value of AC = m + n, namely 11.

1999

19. (C) Let DC = m and AD = n. By the Pythagorean Theorem, $AB^2 = AD^2 + DB^2$. Hence $(m+n)^2 = n^2 + 57$, which yields m(m+2n) = 57. Since m and n are positive integers, the only possibilities are m = 1, n = 28 and m = 3, n = 8. The second of these gives the least possible value of AC = m + n, namely 11.

2007A 19. Answer (E): Let h be the length of the altitude from A in $\triangle ABC$. Then

$$2007 = \frac{1}{2} \cdot BC \cdot h = \frac{1}{2} \cdot 223 \cdot h,$$

so h=18. Thus A is on one of the lines y=18 or y=-18. Line DE has equation x-y-300=0. Let A have coordinates (a,b). By the formula for the distance from a point to a line, the distance from A to line DE is $|a-b-300|/\sqrt{2}$. The area of $\triangle ADE$ is

$$7002 = \frac{1}{2} \cdot \frac{|a - b - 300|}{\sqrt{2}} \cdot DE = \frac{1}{2} \cdot \frac{|a \pm 18 - 300|}{\sqrt{2}} \cdot 9\sqrt{2}.$$

Thus $a = \pm 18 \pm 1556 + 300$, and the sum of the four possible values of a is $4 \cdot 300 = 1200$.

OR

As above, conclude that A is on one of the lines $y = \pm 18$. By similar reasoning, A is on one of two particular lines l_1 and l_2 parallel to \overline{DE} . Therefore there are four possible positions for A, determined by the intersections of the lines y = 18 and y = -18 with each of l_1 and l_2 . Let the line y = 18 intersect l_1 and l_2 in points (x_1, y_1) and (x_2, y_2) , and let the line y = -18 intersect l_1 and l_2 in points (x_3, y_3) and (x_4, y_4) . The four points of intersection are the vertices of a parallelogram, and the center of the parallelogram has x-coordinate $(1/4)(x_1 + x_2 + x_3 + x_4)$. The center is the intersection of the line y = 0 and line DE. Because line DE has equation y = x - 300, the center of the parallelogram is (300, 0). Thus the sum of all possible x-coordinates of A is $4 \cdot 300 = 1200$.

19. **Answer (D):** By the Power of a Point Theorem, $BC \cdot CX = AC^2 - r^2$ where r = AB is the radius of the circle. Thus $BC \cdot CX = 97^2 - 86^2 = 2013$. Since BC = BX + CX and CX are both integers, they are complementary factors of 2013. Note that $2013 = 3 \cdot 11 \cdot 61$, and CX < BC < AB + AC = 183. Thus the only possibility is CX = 33 and BC = 61.

2014A 19. Answer (E): Solve the equation for k to obtain $k = -\frac{12}{x} - 5x$. For each integer value of x except x = 0, there is a corresponding rational value for k. As a function of x, $|k| = \frac{12}{x} + 5x$ is increasing for $x \ge 2$. Thus by inspection, the integer values of x that ensure |k| < 200 satisfy the inequality $-39 \le x \le 39$. There are 78 such values. Assume that a and b are two different integer values of x that produce the same k. Then $k = -\frac{12}{a} - 5a = -\frac{12}{b} - 5b$, which simplifies to (5ab - 12)(a - b) = 0. Because $a \ne b$, it follows that 5ab = 12, but there are no integers satisfying this equation. Thus the values of k corresponding to the 78 values of k are all distinct, and the answer is therefore 78.

2015B

19. **Answer (C):** Let O be the center of the circle on which X, Y, Z, and W lie. Then O lies on the perpendicular bisectors of segments \overline{XY} and \overline{ZW} , and OX = OW. Note that segments \overline{XY} and \overline{AB} have the same perpendicular bisector and segments \overline{ZW} and \overline{AC} have the same perpendicular bisector, from which it follows that O lies on the perpendicular bisectors of segments \overline{AB} and \overline{AC} ; that is, O is the circumcenter of $\triangle ABC$. Because $\angle C = 90^\circ$, O is the midpoint of hypotenuse \overline{AB} . Let $a = \frac{1}{2}BC$ and $b = \frac{1}{2}CA$. Then $a^2 + b^2 = 6^2$ and $12^2 + 6^2 = OX^2 = OW^2 = b^2 + (a + 2b)^2$. Solving these two equations simultaneously gives $a = b = 3\sqrt{2}$. Thus the perimeter of $\triangle ABC$ is $12 + 2a + 2b = 12 + 12\sqrt{2}$.

2002B 20. **(B)** Let OM = a and ON = b. Then

$$19^2 = (2a)^2 + b^2$$
 and $22^2 = a^2 + (2b)^2$.

Hence

$$5(a^2 + b^2) = 19^2 + 22^2 = 845.$$

It follows that

$$MN = \sqrt{a^2 + b^2} = \sqrt{169} = 13.$$

Since $\triangle XOY$ is similar to $\triangle MON$ and $XO = 2 \cdot MO$, we have $XY = 2 \cdot MN = 26$.

2008A 20. Answer (E): By the Angle Bisector Theorem,

$$AD = 5 \cdot \frac{3}{3+4} = \frac{15}{7}$$
 and $BD = 5 \cdot \frac{4}{3+4} = \frac{20}{7}$.

To determine CD, start with the relation $Area(\triangle ADC) + Area(\triangle BCD) = Area(\triangle ABC)$ to get

$$\frac{3 \cdot CD}{2\sqrt{2}} + \frac{4 \cdot CD}{2\sqrt{2}} = \frac{3 \cdot 4}{2}.$$

This gives $CD = \frac{12\sqrt{2}}{7}$. Now use the fact that the area of a triangle is given by rs, where r is the radius of the inscribed circle and s is half the perimeter of the triangle. The ratio of the area of $\triangle ADC$ to the area of $\triangle BCD$ is the ratio of the altitudes to their common base \overline{CD} , which is $\frac{AD}{BD} = \frac{3}{4}$. Hence

$$\frac{3}{4} = \frac{\text{Area}(\triangle ADC)}{\text{Area}(\triangle BCD)} = \frac{r_a(3 + \frac{15}{7} + \frac{12\sqrt{2}}{7})}{r_b(4 + \frac{20}{7} + \frac{12\sqrt{2}}{7})}.$$

which yields

$$\frac{r_a}{r_b} = \frac{3(4+\sqrt{2})}{4(3+\sqrt{2})} = \frac{3}{28}(10-\sqrt{2}).$$

- 2009A
- 20. **Answer (E):** Because $\triangle AED$ and $\triangle BEC$ have equal areas, so do $\triangle ACD$ and $\triangle BCD$. Side \overline{CD} is common to $\triangle ACD$ and $\triangle BCD$, so the altitudes from A and B to \overline{CD} have the same length. Thus $\overline{AB} \parallel \overline{CD}$, so $\triangle ABE$ is similar to $\triangle CDE$ with similarity ratio

$$\frac{AE}{EC} = \frac{AB}{CD} = \frac{9}{12} = \frac{3}{4}.$$

Let AE = 3x and EC = 4x. Then 7x = AE + EC = AC = 14, so x = 2, and AE = 3x = 6.

2011B

20. **Answer (C):** Because \overline{DE} is parallel to \overline{AC} and \overline{EF} is parallel to \overline{AB} it follows that $\angle BDE = \angle BAC = \angle EFC$. By the Inscribed Angle Theorem, $\angle BDE = \angle BXE$ and $\angle EFC = \angle EXC$. Therefore $\angle BXE = \angle EXC$. Furthermore BE = EC, so by the Angle Bisector Theorem XB = XC. Note that $\angle BXC = 2\angle BXE = 2\angle BDE = 2\angle BAC$, and by the Inscribed Angle Theorem, it follows that X is the circumcenter of $\triangle ABC$, so XA = XB = XC = R the circumcadius of $\triangle ABC$.

Let a = BC, b = AC, and c = AB. The area of $\triangle ABC$ equals $\frac{1}{4R}(abc)$, and by Heron's Formula it also equals $\sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{1}{2}(a+b+c)$. Thus

$$R=\frac{abc}{4\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}}=\frac{13\cdot14\cdot15}{4\sqrt{21\cdot8\cdot7\cdot6}}=\frac{65}{8},$$

and $XA + XB + XC = 3R = \frac{195}{8}$.

20. Answer (A): Let g and h be the lengths of the altitudes of T and T' from the sides with lengths 8 and b, respectively. The Pythagorean Theorem implies that $g = \sqrt{5^2 - 4^2} = 3$, and so the area of T is $\frac{1}{2} \cdot 8 \cdot 3 = 12$, and the perimeter is 5 + 5 + 8 = 18. The Pythagorean Theorem implies that $h = \frac{1}{2}\sqrt{4a^2 - b^2}$. Thus 18 = 2a + b and

$$12 = \frac{1}{2}b \cdot \frac{1}{2}\sqrt{4a^2 - b^2} = \frac{1}{4}b\sqrt{4a^2 - b^2}.$$

Solving for a and substituting in the square of the second equation yields

$$12^{2} = \frac{b^{2}}{16} (4a^{2} - b^{2}) = \frac{b^{2}}{16} ((18 - b)^{2} - b^{2})$$
$$= \frac{b^{2}}{16} \cdot 18 \cdot (18 - 2b) = \frac{9}{4} b^{2} (9 - b).$$

Thus $64 - b^2(9 - b) = b^3 - 9b^2 + 64 = (b - 8)(b^2 - b - 8) = 0$. Because T and T' are not congruent, it follows that $b \neq 8$. Hence $b^2 - b - 8 = 0$ and the positive solution of this equation is $\frac{1}{2}(\sqrt{33} + 1)$. Because 25 < 33 < 36, the solution is between $\frac{1}{2}(5 + 1) = 3$ and $\frac{1}{2}(6 + 1) = 3.5$, so the closest integer is 3.

20. **Answer (D):** It follows from the Pythagorean Theorem that $CM = MB = \frac{3}{2}\sqrt{2}$. Because quadrilateral AIME is cyclic, opposite angles are supplementary and thus $\angle IME$ is a right angle. Let x = CI and y = BE; then AI = 3 - x and AE = 3 - y. By the Law of Cosines in $\triangle MCI$,

2018A

$$IM^{2} = x^{2} + \left(\frac{3}{2}\sqrt{2}\right)^{2} - 2 \cdot x \cdot \frac{3}{2}\sqrt{2} \cdot \cos 45^{\circ} = x^{2} - 3x + \frac{9}{2}.$$

Similarly, $ME^2 = y^2 - 3y + \frac{9}{2}$. By the Pythagorean Theorem in right triangles EMI and IAE,

$$\left(x^2 - 3x + \frac{9}{2}\right) + \left(y^2 - 3y + \frac{9}{2}\right) = (3 - x)^2 + (3 - y)^2,$$

which simplifies to x + y = 3. Because the area of $\triangle EMI$ is 2, it follows that $IM^2 \cdot ME^2 = 16$. Therefore

$$\left(x^2 - 3x + \frac{9}{2}\right)\left((3-x)^2 - 3(3-x) + \frac{9}{2}\right) = 16,$$

which simplifies to $\left(x^2 - 3x + \frac{9}{2}\right)^2 = 16$. Because y > x, the only real solution is $x = \frac{3-\sqrt{7}}{2}$. The requested sum is 3+7+2=12.

OR

Place the figure in the coordinate plane with A at (0,0), B at (3,0), and C at (0,3). Then M is at $\left(\frac{3}{2},\frac{3}{2}\right)$. Let s=AE and t=CI. Then the coordinates of E are (s,0), and the coordinates of I are (0,3-t). Because AIME is a cyclic quadrilateral and $\angle EAI$ is a right angle, $\angle IME$ is a right angle. Therefore \overline{MI} and \overline{ME} are perpendicular, so the product of their slopes is

$$\frac{\frac{3}{2}}{2} \cdot \frac{t - \frac{3}{2}}{2} = -1$$

20. **Answer (C):** Let O be the center of the regular hexagon. Points B, O, E are collinear and BE = BO + OE = 2. Trapezoid FABE is isosceles, and \overline{XZ} is its midline. Hence $XZ = \frac{3}{2}$ and analogously $XY = ZY = \frac{3}{2}$.

2018B

Denote by U_1 the intersection of \overline{AC} and \overline{XZ} and by U_2 the intersection of \overline{AC} and \overline{XY} . It is easy to see that $\triangle AXU_1$ and $\triangle U_2XU_1$ are congruent $30-60-90^{\circ}$ right triangles.

By symmetry the area of the convex hexagon enclosed by the intersection of $\triangle ACE$ and $\triangle XYZ$, shaded in the figure, is equal to the area of $\triangle XYZ$ minus 3 times the area of $\triangle U_2XU_1$. The hypotenuse of $\triangle U_2XU_1$ is $XU_2 = AX = \frac{1}{2}$, so the area of $\triangle U_2XU_1$ is

$$\frac{1}{2} \cdot \frac{\sqrt{3}}{4} \cdot \left(\frac{1}{2}\right)^2 = \frac{1}{32}\sqrt{3}.$$

The area of the equilateral triangle XYZ with side length $\frac{3}{2}$ is equal to $\frac{1}{4}\sqrt{3}\cdot\left(\frac{3}{2}\right)^2=\frac{9}{16}\sqrt{3}$. Hence the area of the shaded hexagon is

$$\frac{9}{16}\sqrt{3} - 3 \cdot \frac{1}{32}\sqrt{3} = 3\sqrt{3}\left(\frac{3}{16} - \frac{1}{32}\right) = \frac{15}{32}\sqrt{3}.$$

OR

Let U_1 and U_2 be as above, and continue labeling the vertices of the shaded hexagon counterclockwise with U_3 , U_4 , U_5 , and U_6 as shown. The area of $\triangle ACE$ is half the area of hexagon ABCDEF.

Triangle $U_2U_4U_6$ is the midpoint triangle of $\triangle ACE$, so its area is $\frac{1}{4}$ of the area of $\triangle ACE$, and thus $\frac{1}{8}$ of the area of ABCDEF. Each of $\triangle U_2U_3U_4$, $\triangle U_4U_5U_6$, and $\triangle U_6U_1U_2$ is congruent to half of $\triangle U_2U_4U_6$, so the total shaded area is $\frac{5}{2}$ times the area of $\triangle U_2U_4U_6$ and therefore $\frac{5}{2} \cdot \frac{1}{8} = \frac{5}{12}$ of the area of ABCDEF. The area of ABCDEF is $6 \cdot \frac{\sqrt{3}}{2} \cdot 1^2$.