UNIT 19 QUESTIONS 16-20

QUADRATICS

2014B 16. Answer (E): Because P(0) = k, it follows that $P(x) = ax^3 + bx^2 + cx + k$. Thus P(1) = a + b + c + k = 2k and P(-1) = -a + b - c + k = 3k. Adding these equations gives 2b = 3k. Hence

$$P(2) + P(-2) = (8a + 4b + 2c + k) + (-8a + 4b - 2c + k)$$
$$= 8b + 2k = 12k + 2k = 14k.$$

OR

Let (P(-2), P(-1), P(0), P(1), P(2)) = (r, 3k, k, 2k, s). The sequence of first differences of consecutive values is (3k-r, -2k, k, s-2k), the sequence of second differences is (r-5k, 3k, s-3k), and the sequence of third differences is (8k-r, s-6k). Because P is a cubic polynomial, the third differences are equal, so P(-2) + P(2) = r + s = 14k.

1999

17. (C) From the hypothesis, P(19) = 99 and P(99) = 19. Let

$$P(x) = (x - 19)(x - 99)Q(x) + ax + b,$$

where a and b are constants and Q(x) is a polynomial. Then

$$99 = P(19) = 19a + b$$
 and $19 = P(99) = 99a + b$.

It follows that 99a - 19a = 19 - 99, hence a = -1 and b = 99 + 19 = 118. Thus the remainder is -x + 118.

2004B

2004B 18. **(E)** Let B = (a, b) and A = (-a, -b). Then

$$4a^2 + 7a - 1 = b$$
 and $4a^2 - 7a - 1 = -b$.

Subtracting gives b = 7a, so $4a^2 + 7a - 1 = 7a$. Thus

$$a^2 = \frac{1}{4}$$
 and $b^2 = (7a)^2 = \frac{49}{4}$,

SO

$$AB = 2\sqrt{a^2 + b^2} = 2\sqrt{\frac{50}{4}} = 5\sqrt{2}.$$

2007A 18. Answer (D): Because f(x) has real coefficients and 2i and 2+i are zeros, so are their conjugates -2i and 2-i. Therefore

$$f(x) = (x+2i)(x-2i)(x-(2+i))(x-(2-i)) = (x^2+4)(x^2-4x+5)$$
$$= x^4 - 4x^3 + 9x^2 - 16x + 20.$$

Hence a + b + c + d = -4 + 9 - 16 + 20 = 9.

OR

As in the first solution,

$$f(x) = (x+2i)(x-2i)(x-(2+i))(x-(2-i)),$$

SO

$$a+b+c+d = f(1)-1 = (1+2i)(1-2i)(-1-i)(-1+i)-1 = (1+4)(1+1)-1 = 9.$$

2011A

18. **Answer (A):** Let A be the apex of the pyramid, and let the base be the square BCDE. Then AB = AD = 1 and $BD = \sqrt{2}$, so $\triangle BAD$ is an isosceles right triangle. Let the cube have edge length x. The intersection of the cube with the plane of $\triangle BAD$ is a rectangle with height x and width $\sqrt{2}x$. It follows that $\sqrt{2} = BD = 2x + \sqrt{2}x$, from which $x = \sqrt{2} - 1$.

Hence the cube has volume

$$(\sqrt{2}-1)^3 = (\sqrt{2})^3 - 3(\sqrt{2})^2 + 3\sqrt{2} - 1 = 5\sqrt{2} - 7.$$
OR

Let A be the apex of the pyramid, let O be the center of the base, let P be the midpoint of one base edge, and let the cube intersect \overline{AP} at Q. Let a coordinate plane intersect the pyramid so that O is the origin, A on the positive y-axis, and $P = \left(\frac{1}{2}, 0\right)$. Segment AP is an altitude of a lateral side of the pyramid, so $AP = \frac{\sqrt{3}}{2}$, and it follows that $A = \left(0, \frac{\sqrt{2}}{2}\right)$. Thus the equation of line AP is $y = \frac{\sqrt{2}}{2} - \sqrt{2}x$. If the side length of the cube is s, then $Q = \left(\frac{s}{2}, s\right)$, so $s = \frac{\sqrt{2}}{2} - \sqrt{2} \cdot \frac{s}{2}$. Solving gives $s = \sqrt{2} - 1$, and the result follows that in the first solution.

2015A 18. Answer (C): The zeros of f are integers and their sum is a, so a is an integer. If r is an integer zero, then $r^2 - ar + 2a = 0$ or

$$a = \frac{r^2}{r-2} = r+2 + \frac{4}{r-2}.$$

So $\frac{4}{r-2} = a - r - 2$ must be an integer, and the possible values of r are 6, 4, 3, 1, 0, and -2. The possible values of a are 9, 8, 0, and -1, all of which yield integer zeros of f, and their sum is 16.

 \mathbf{OR}

As above, a must be an integer. The function f has zeros at

$$x = \frac{a \pm \sqrt{a^2 - 8a}}{2}.$$

These values are integers only if $a^2 - 8a = w^2$ for some integer w. Solving for a in terms of w gives $a = 4 \pm \sqrt{16 + w^2}$, so $16 + w^2$ must be a perfect square. The only integer solutions for w are 0 and ± 3 , from which it follows that the values of a are 0, 8, 9, and -1, all of which yield integer values of x. The requested sum is 16.

2003A 19. (D) The original parabola has equation $y = a(x - h)^2 + k$, for some a, h, and k, with $a \neq 0$. The reflected parabola has equation $y = -a(x - h)^2 - k$. The translated parabolas have equations

$$f(x) = a(x - h \pm 5)^2 + k$$
 and $g(x) = -a(x - h \mp 5)^2 - k$,

SO

$$(f+g)(x) = \pm 20a(x-h).$$

Since $a \neq 0$, the graph is a non-horizontal line.

2001

19. (A) The sum and product of the zeros of P(x) are -a and -c, respectively. Therefore,

$$-\frac{a}{3} = -c = 1 + a + b + c.$$

Since c = P(0) is the y-intercept of y = P(x), it follows that c = 2. Thus a = 6 and b = -11.

2009B

19. **Answer (E):** Note that $f(n) = n^4 + 40n^2 + 400 - 400n^2 = (n^2 + 20)^2 - (20n)^2 = (n^2 + 20n + 20)(n^2 - 20n + 20)$. Because the first factor is greater than 1, the product cannot be prime unless the second factor is 1. The solutions of the equation $n^2 - 20n + 20 = 1$ are 1 and 19. The values of $f(1) = 1^2 + 20 \cdot 1 + 20 = 41$ and $f(19) = 19^2 + 20 \cdot 19 + 20 = 761$ are prime, and the requested sum is 41 + 761 = 802.

2011A

20. **Answer (C):** Because \overline{DE} is parallel to \overline{AC} and \overline{EF} is parallel to \overline{AB} it follows that $\angle BDE = \angle BAC = \angle EFC$. By the Inscribed Angle Theorem, $\angle BDE = \angle BXE$ and $\angle EFC = \angle EXC$. Therefore $\angle BXE = \angle EXC$. Furthermore BE = EC, so by the Angle Bisector Theorem XB = XC. Note that $\angle BXC = 2\angle BXE = 2\angle BDE = 2\angle BAC$, and by the Inscribed Angle Theorem, it follows that X is the circumcenter of $\triangle ABC$, so XA = XB = XC = R the circumcadius of $\triangle ABC$.

Let a = BC, b = AC, and c = AB. The area of $\triangle ABC$ equals $\frac{1}{4R}(abc)$, and by Heron's Formula it also equals $\sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{1}{2}(a+b+c)$. Thus

$$R=\frac{abc}{4\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}}=\frac{13\cdot14\cdot15}{4\sqrt{21\cdot8\cdot7\cdot6}}=\frac{65}{8},$$

and $XA + XB + XC = 3R = \frac{195}{8}$.

2012A

20. Answer (B):

A factor in the product defining P(x) has degree 2012 if and only if the sum of the exponents in x is equal to 2012. Because there is only one way to write 2012

as a sum of distinct powers of 2, namely the one corresponding to its binary expansion $2012 = 11111011100_2$, it follows that the coefficient of x^{2012} is equal to $2^0 \cdot 2^1 \cdot 2^5 = 2^6$.

Note: In general, if $0 \le n \le 2047$ and $n = \sum_{j \in A} 2^j$ for $A \subseteq \{0, 1, 2, \dots, 10\}$, then the coefficient of x^n is equal to 2^a where $a = \binom{11}{2} - \sum_{j \in A} j$.