UNIT 18 QUESTIONS 16-20

**SEQUENCE AND SERIES** 

1999

2008A

16. **Answer (D):** The first three terms of the sequence can be written as  $3 \log a + 7 \log b$ ,  $5 \log a + 12 \log b$ , and  $8 \log a + 15 \log b$ . The difference between consecutive terms can be written either as

$$(5\log a + 12\log b) - (3\log a + 7\log b) = 2\log a + 5\log b$$

or as

$$(8\log a + 15\log b) - (5\log a + 12\log b) = 3\log a + 3\log b.$$

Thus  $\log a = 2 \log b$ , so the first term of the sequence is  $13 \log b$ , and the difference between consecutive terms is  $9 \log b$ . Hence the  $12^{\text{th}}$  term is

$$(13 + (12 - 1) \cdot 9) \log b = 112 \log b = \log(b^{112}).$$

2016B

2008A 17. **Answer (D):** If  $a_1$  is even, then  $a_2 = (a_1/2) < a_1$ , so the required condition is not met. If  $a_1 \equiv 1 \pmod{4}$ , then  $a_2 = 3a_1 + 1$  is a multiple of 4, so  $a_3 = (3a_1 + 1)/2$ , and  $a_4 = (3a_1 + 1)/4 \le a_1$ . Hence the required condition is also not met in this case. If  $a_1 \equiv 3 \pmod{4}$ , then  $a_2$  is even but not a multiple of 4. It follows that  $a_3 = (3a_1 + 1)/2 > a_1$ , and  $a_3$  is odd, so  $a_4 = 3a_3 + 1 > a_3 > a_1$ . Because 2008 is a multiple of 4, a total of  $\frac{2008}{4} = 502$  possible values of  $a_1$  are congruent to 3 (mod 4). These 502 values of  $a_1$  meet the required condition.

Note: It is a famous unsolved problem to show whether or not the number 1 must be a term of this sequence for every choice of  $a_1$ .

2009A

17. **Answer (C):** The sum of the first series is

$$\frac{a}{1-r_1} = r_1,$$

from which  $r_1^2 - r_1 + a = 0$ , and  $r_1 = \frac{1}{2}(1 \pm \sqrt{1 - 4a})$ . Similarly,  $r_2 = \frac{1}{2}(1 \pm \sqrt{1 - 4a})$ .  $\sqrt{1-4a}$ ). Because  $r_1$  and  $r_2$  must be different,  $r_1+r_2=1$ . Such series exist as long as  $0 < a < \frac{1}{4}$ .

1999

20. **(E)** For  $n \geq 3$ ,

$$a_n = \frac{a_1 + a_2 + \dots + a_{n-1}}{n-1}.$$

Thus  $(n-1)a_n = a_1 + a_2 + \cdots + a_{n-1}$ . It follows that

$$a_{n+1} = \frac{a_1 + a_2 + \dots + a_{n-1} + a_n}{n} = \frac{(n-1) \cdot a_n + a_n}{n} = a_n,$$

for  $n \geq 3$ . Since  $a_9 = 99$  and  $a_1 = 19$ , it follows that

$$99 = a_3 = \frac{19 + a_2}{2},$$

is 19, 179, 99, 99, . . . .) and hence that  $a_2 = 179$ . (The sequ

2010A

20. Answer (C): Because  $a_n = 1 + (n-1)d_1$  and  $b_n = 1 + (n-1)d_2$  for some integers  $d_1$  and  $d_2$ , it follows that n-1 is a factor of  $gcd(a_n-1,b_n-1)$ . The ordered pair  $(a_n, b_n)$  must be one of (2, 1005), (3, 670), (5, 402), (6, 335), (10, 201), (15, 134), or(30, 67). For every pair except the sixth pair, the numbers  $a_n - 1$  and  $b_n - 1$ are relatively prime, so n=2. In the exceptional case, gcd(15-1,134-1)=7. The sequences defined by  $a_n = 2n - 1$  and  $b_n = 19n - 18$  satisfy the conditions, so n = 8.

2010B