UNIT 13 QUESTIONS 16-20

ARITHMETIC

2018B

17. **Answer (A):** The first inequality is equivalent to 9p > 5q, and because both sides are integers, it follows that $9p - 5q \ge 1$. Similarly, $4q - 7p \ge 1$. Now

$$\frac{1}{63} = \frac{4}{7} - \frac{5}{9} = \left(\frac{p}{q} - \frac{5}{9}\right) + \left(\frac{4}{7} - \frac{p}{q}\right)$$

$$= \frac{9p - 5q}{9q} + \frac{4q - 7p}{7q}$$

$$\geq \frac{1}{9q} + \frac{1}{7q}$$

$$= \frac{16}{63q}.$$

Thus $q \ge 16$. Because

$$\frac{8}{16} < \frac{5}{9} < \frac{9}{16} < \frac{4}{7} < \frac{10}{16},$$

the fraction $\frac{9}{16}$ lies in the required interval, but $\frac{8}{16}$ and $\frac{10}{16}$ do not. Therefore when q is as small as possible, q = 16 and p = 9, and the requested difference is 16 - 9 = 7.

Note: A theorem in the study of Farey fractions states that if $\frac{a}{p} < \frac{b}{q}$ and bp - aq = 1, then the rational number with least denominator between $\frac{a}{p}$ and $\frac{b}{q}$ is $\frac{a+b}{p+q}$.

2003A

18. (B) Note that n = 100q + r = q + r + 99q. Hence q + r is divisible by 11 if and only if n is divisible by 11. Since $10,000 \le n \le 99,999$, there are

$$\left| \frac{99999}{11} \right| - \left| \frac{9999}{11} \right| = 9090 - 909 = 8181$$

such numbers.

2018B

19. **Answer (C):** Let d be the next divisor of n after 323. Then $gcd(d, 323) \neq 1$, because otherwise $n \geq 323d > 323^2 > 100^2 = 10000$, contrary to the fact that n is a 4-digit number. Therefore $d - 323 \geq gcd(d, 323) > 1$. The prime factorization of 323 is $17 \cdot 19$. Thus the next divisor of n is at least $323 + 17 = 340 = 17 \cdot 20$. Indeed, 340 will be the next number in Mary's list when $n = 17 \cdot 19 \cdot 20 = 6460$.

2017A

20. **Answer (E):** Let $u = \log_b a$. Because $u^{2017} = 2017u$, either u = 0 or $u = \pm \sqrt[2016]{2017}$. If u = 0, then a = 1 and b can be any integer from 2 to 200. If $u = \pm \sqrt[2016]{2017}$, then $a = b^{\pm \sqrt[2016]{2017}}$, where again b can be any integer from 2 to 200. Therefore there are $3 \cdot 199 = 597$ such ordered pairs.