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UNIT 12 QUESTIONS 16-20

ALGEBRA

20044 16, (B) The given expression is defined if and only if

l0g2003 (1082002 (1082001 )) > 0,
that is, if and only if
log002(10g2001 ) > 2003° = 1.
This inequality in turn is satisfied if and only if
logyp01 > 2002,

that is, if and only if 2 > 20012992,
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2003B

2003B

17. (D) We have
1 =log(zy®) =logz +3logy and 1 =log(z’y) = 2logz + logy.

Solving yields log z = % and logy = % Thus

log(zy) = logx + logy = g

OR

The given equations imply that zy® = 10 = 2%y. Thus
10 10\ °
= -— d — == 10.
y=19 ad (12)
It follows that z = 10%/° and y = 10'/%, so log(zy) = log(10*/°) = 3/5.
OR

2y, so x = y*. Hence

1 =log(xzy®) = log(y®) = 5logy, and logy = %

Since log(zy®) = log(z%y), we have zy® = z

So log(zy) = log(y®) = 3/5.

18. (B) We have
11y" = 72° = 7(a“b?)® = Ta b,

The minimum value of z is obtained when neither x nor y contains prime factors
other than 7 and 11. Therefore we may assume that a = 7 and b = 11, so = =
7¢11¢ and Ta® = 7°¢t111%4, Letting y = 7™11" we obtain 11y!3 = 713m1113n+1,
Hence 7°¢t1115¢ = 713m1113n+1 " The smallest positive integer solutions are
c=5,d=8 m=2,andn=3. Thusa+b+c+d=T+11+4+5+4+8 = 31.
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2002B 19, (D) Adding the given equations gives 2(ab+bc+ca) = 484, so ab+bc+ca = 242.
Subtracting from this each of the given equations yields bec = 90, ca = 80, and
ab = 72. It follows that a?b*c? = 90 - 80 - 72 = 720%. Since abc > 0, we have
abc = 720.

2008A 19. Answer (C): Each term in the expansion has the form x¢*t°*¢ where

0 <a<27,0<b<14, and 0 < ¢ < 14. There are (14 + 1)2 = 225
possible combinations of values for b and ¢, and for every combination except
(b,¢) = (0,0), there is a unique a with a + b+ ¢ = 28. Thus the coefficient of
228 is 224.

OR

Let P(z) = (14+x+ 22+ -+ 2?2 = 1+ riz+ roa? + -+ + rogx?® and
Q(z) =14+ x+ 2%+ ---+ 2%7. The coefficient of 2% in the product P(z)Q(x)
iST1+T2+°"+T‘28=P(1)—1:152—1:224.

2011A
19. Answer (B): For 0 < z < 100, the nearest lattice point directly above the
line y = %:c +2is (:c, %a: + 3) if = is even and (:1:, %:D + g) if z is odd. The slope
of the line that contains this point and (0, 2) is % + % if  is even and % + % if
x is odd. The minimum value of the slope is % if z is even and % if z is odd.
Therefore the line y = max + 2 contains no lattice point with 0 < x < 100 for

1 50
§<m<®.
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(E) For n > 3,
apt+ay+:+ 0y

n—1

n —
Thus (n — 1)a, = a; + a2 + - - - + a,_1. It follows that

a+a;+---+ap-) +a, (n-l)'an+a11_
Qny1 = T = Qp,
n n

for n > 3. Since ag = 99 and a; = 19, it follows that

. 19'{"(12

99':(13 9 ’

and hence that a; = 179. (The sequ is 19,179,99,99,....)

(C) Since 0.ab = &, the denominator must be a factor of 99 = 3% - 11. The
factors of 99 are 1, 3, 9, 11, 33, and 99. Since a and b are not both nine, the
denominator cannot be 1. By choosing a and b appropriately, we can make

fractions with each of the other denominators.
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2005B  20.

2014B 9.

(C) Note that the sum of the elements in the set is 8. Let z = a+ b+ c+d, so
e+ f+g+h=8—z. Then

(a+b+c+d)?+(e+f+g+h)?=2"+(8—1x)?
= 2x% — 162 + 64 = 2(x — 4)* + 32 > 32.

The value of 32 can be attained if and only if z = 4. However, it may be assumed
without loss of generality that a = 13, and no choice of b, ¢, and d gives a total
of 4 for z. Thus (xz —4)? > 1, and

(a+b+c+d)?+(e+f+g+h)?=2x—4)*+32>34.

A total of 34 can be attained by letting a, b, ¢, and d be distinct elements in the
set {—7,-5,2,13}.

Answer (B): The domain of log,o(z — 40) + log,,(60 — z) is 40 < z < 60.
Within this domain, the inequality log;,(z —40)+1log,((60—xz) < 2 is equivalent
to each of the following: log,,((z — 40)(60 — z)) < 2, (z — 40)(60 — z) <
102 = 100, z? — 100z + 2500 > 0, and (z — 50)2 > 0. The last inequality is
true for all x # 50. Thus the integer solutions to the original inequality are
41,42, ...,49,51,52,...,59, and their number is 18.



