UNIT 1 EXERCISES 16-20

2D GEOMETRY

2003B

2006A

2001

17. (B) Place an xy-coordinate system with origin at D and points C and A on the positive x- and y-axes, respectively. Then the circle centered at M has equation

$$(x-2)^2 + y^2 = 4,$$

and the circle centered at A has equation

$$x^2 + (y-4)^2 = 16.$$

Solving these equations for the coordinates of P gives x = 16/5 and y = 8/5, so the answer is 16/5.

We have AP = AD = 4 and PM = MD = 2, so $\triangle ADM$ is congruent to $\triangle APM$, and $\angle APM$ is a right angle. Draw \overline{PQ} and \overline{PR} perpendicular to \overline{AD} and \overline{CD} , respectively. Note that $\angle APQ$ and $\angle MPR$ are both complements of $\angle QPM$. Thus $\triangle APQ$ is similar to $\triangle MPR$, and

$$\frac{AQ}{MR} = \frac{AP}{MP} = \frac{4}{2} = 2.$$

Let MR = x. Then AQ = 2x, PR = QD = 4 - 2x, and PQ = RD = x + 2. Therefore

$$2=\frac{AQ}{MR}=\frac{PQ}{PR}=\frac{x+2}{4-2x},$$

so x = 6/5 and PQ = 6/5 + 2 = 16/5.

OR

Let $\angle MAD = \alpha$. Then

$$PQ = (PA)\sin(\angle PAQ) = 4\sin(2\alpha) = 8\sin\alpha\cos\alpha = 8\left(\frac{2}{\sqrt{20}}\right)\left(\frac{4}{\sqrt{20}}\right) = \frac{16}{5}.$$

2016B 17. **Answer (D):** Let x = BH. Then CH = 8 - x and $AH^2 = 7^2 - x^2 = 9^2 - (8 - x)^2$, so x = 2 and $AH = \sqrt{45}$. By the Angle Bisector Theorem in $\triangle ACH$, $\frac{AP}{PH} = \frac{CA}{CH} = \frac{9}{6}$, so $AP = \frac{3}{5}AH$. Similarly, by the Angle Bisector Theorem in $\triangle ABH$, $\frac{AQ}{QH} = \frac{BA}{BH} = \frac{7}{2}$, so $AQ = \frac{7}{9}AH$. Then $PQ = AQ - AP = (\frac{7}{9} - \frac{3}{5})AH = \frac{8}{45}\sqrt{45} = \frac{8}{15}\sqrt{5}$.

2001

18. **(D)** Let C be the intersection of the horizontal line through A and the vertical line through B. In right triangle ABC, we have BC = 3 and AB = 5, so AC = 4. Let x be the radius of the third circle, and D be the center. Let E and F be the points of intersection of the horizontal line through D with the vertical lines through B and A, respectively, as shown.

In $\triangle BED$ we have BD = 4 + x and BE = 4 - x, so

$$DE^2 = (4+x)^2 - (4-x)^2 = 16x,$$

and $DE = 4\sqrt{x}$. In $\triangle ADF$ we have AD = 1 + x and AF = 1 - x, so

$$FD^2 = (1+x)^2 - (1-x)^2 = 4x,$$

and $FD = 2\sqrt{x}$. Hence,

$$4 = AC = FD + DE = 2\sqrt{x} + 4\sqrt{x} = 6\sqrt{x}$$

and $\sqrt{x} = \frac{2}{3}$, which implies $x = \frac{4}{9}$.

2004A 18. (D) Let F be the point at which \overline{CE} is tangent to the semicircle, and let G be the midpoint of \overline{AB} . Because \overline{CF} and \overline{CB} are both tangents to the semicircle, CF = CB = 2. Similarly, EA = EF. Let x = AE. The Pythagorean Theorem applied to $\triangle CDE$ gives

$$(2-x)^2 + 2^2 = (2+x)^2$$
.

It follows that x = 1/2 and CE = 2 + x = 5/2.

2004A 19. (D) Let E, H, and F be the centers of circles A, B, and D, respectively, and let G be the point of tangency of circles B and C. Let x = FG and y = GH. Since the center of circle D lies on circle A and the circles have a common point of tangency, the radius of circle D is 2, which is the diameter of circle A. Applying the Pythagorean Theorem to right triangles EGH and FGH gives

$$(1+y)^2 = (1+x)^2 + y^2$$
 and $(2-y)^2 = x^2 + y^2$,

from which it follows that

$$y = x + \frac{x^2}{2}$$
 and $y = 1 - \frac{x^2}{4}$.

The solutions of this system are (x, y) = (2/3, 8/9) and (x, y) = (-2, 0). The radius of circle B is the positive solution for y, which is 8/9.

2006A 19. (E) The slope of the line l containing the centers of the circles is $5/12 = \tan \theta$, where θ is the acute angle between the x-axis and line l. The equation of line l is y - 4 = (5/12)(x - 2). This line and the two common external tangents are concurrent. Because one of these tangents is the x-axis, the point of intersection is the x-intercept of line l, which is (-38/5,0). The acute angle between the x-axis and the other tangent is 2θ , so the slope of that tangent is

$$\tan 2\theta = 2 \cdot \frac{5/12}{1 - (5/12)^2} = \frac{120}{119}.$$

Thus the equation of that tangent is y = (120/119)(x + (38/5)), and

$$b = \frac{120}{119} \cdot \frac{38}{5} = \frac{912}{119}.$$