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17. (B) Place an zy-coordinate system with origin at D and points C' and A on the

positive z- and y-axes, respectively. Then the circle centered at M has equation
(z-2%+y° =4,

and the circle centered at A has equation
z?+ (y—4)* = 16.

Solving these equations for the coordinates of P gives z = 16/5 and y = 8/5, so
the answer is 16/5.
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We have AP = AD = 4 and PM = MD = 2, so AADM is congruent to
AAPM, and ZAPM is a right angle. Draw PQ and PR perpendicular to AD
and CD, respectively. Note that ZAPQ and /M PR are both complements of
LQPM. Thus AAPQ is similar to AM PR, and

AQ AP 4

MR MP 2
Let MR = z. Then AQ =2z, PR=QD =4—-2z,and PQ = RD =z + 2.
Therefore

_AQ  PQ  z+42
- MR PR 4-2’
soz=06/5and PQ =6/5+2=16/5.
OR

2

Let /ZMAD = «. Then

|5

PQ = (PA)sin(ZPAQ) = 4sin(2a) = 8sinacosa = 8 (

) (7%)-

g
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2016B 17. Answer (D): Let x = BH. Then CH = 8 —z and AH? = 7% — 2% =
92 — (8 —z)?, s0o 2 = 2 and AH = /45. By the Angle Bisector Theorem in
ANACH, ﬁ—g = % = %, so AP = %AH. Similarly, by the Angle Bisector
Theorem in AABH, 5% = 55 = 5, 50 AQ = FAH. Then PQ = AQ — AP =

=3
(£ -2)AH = £V45= £/5.

15
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2001 g3, (D) Let C be the intersection of the horizontal line

through A and the vertical line through B. In right 5
triangle ABC', we have BC = 3 and AB = 5, so AC = 4.
Let z be the radius of the third circle, and D be the/ , e

center. Let F and F' be the points of intersection of the
horizontal line through D with the vertical lines through

B and A, respectively, as shown.
In ABED we have BD =4+ x and BE =4 — z, so

DE? = (4 +2)? — (4 — 2)? = 162,
and DE = 4,/z. In AADF we have AD =1+ 2z and AF =1 —z, so
FD?=(1+2)* - (1—2)? =4z,
and F'D = 2,/z. Hence,
4=AC =FD+ DE =2z + 4z =6z

Y £

and /z = 2, which implies z = 3.

2004A 18. (D) Let F be the point at which CE is tangent to the semicircle, and let G be
the midpoint of AB. Because CF and CB are both tangents to the semicircle,
CF = CB = 2. Similarly, EA = EF. Let x = AE. The Pythagorean Theorem
applied to ACDEFE gives

(2—2)2+22=(2+2)2

It follows that x = 1/2 and CE =2+ 2 = 5/2.
D C
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2004A 19. (D) Let E, H, and F be the centers of circles A, B, and D, respectively, and let
G be the point of tangency of circles B and C. Let z = FG and y = GH. Since
the center of circle D lies on circle A and the circles have a common point of
tangency, the radius of circle D is 2, which is the diameter of circle A. Applying
the Pythagorean Theorem to right triangles EGH and FGH gives

1+y)?=>01+2)2+y?> and (2—y)?=2%+9?

from which it follows that

2 .’II2

y=x+% and y=1—z.
The solutions of this system are (z,y) = (2/3,8/9) and (z,y) = (—2,0). The
radius of circle B is the positive solution for y, which is 8/9.

2006A 19, (E) The slope of the line ! containing the centers of the circles is 5/12 = tan 6,
where 6 is the acute angle between the z-axis and line [. The equation of line [
is y —4 = (5/12)(z — 2). This line and the two common external tangents are
concurrent. Because one of these tangents is the z-axis, the point of intersection
is the z-intercept of line [, which is (—38/5,0). The acute angle between the
z-axis and the other tangent is 26, so the slope of that tangent is

5/12 120
tan20 = 2. —A—— _ =~
o 1-(5/12)2 119
Thus the equation of that tangent is y = (120/119) (z + (38/5)), and

_ 120 38 012
119 5 0 119°



