UNIT 4 EXERCISES 11-15

TRIANGLES

2013A 12. Answer (A): Let the angles of the triangle be $\alpha - \delta$, α , and $\alpha + \delta$. Then $3\alpha = \alpha - \delta + \alpha + \alpha + \delta = 180^{\circ}$, so $\alpha = 60^{\circ}$. There are three cases depending on which side is opposite to the 60° angle. Suppose that the triangle is ABC with $\angle BAC = 60^{\circ}$. Let D be the foot of the altitude from C. The triangle CAD is a $30\text{-}60\text{-}90^{\circ}$ triangle, so $AD = \frac{1}{2}AC$ and $CD = \frac{\sqrt{3}}{2}AC$. There are three cases to consider. In each case the Pythagorean Theorem can be used to solve for the unknown side.

If AB = 5, AC = 4, and BC = x, then AD = 2, $CD = 2\sqrt{3}$, and BD = |AB - AD| = 3. It follows that $x^2 = BC^2 = CD^2 + BD^2 = 21$, so $x = \sqrt{21}$.

If AB = x, AC = 4, and BC = 5, then AD = 2, $CD = 2\sqrt{3}$, and BD = |AB - AD| = |x - 2|. It follows that $25 = BC^2 = CD^2 + BD^2 = 12 + (x - 2)^2$, and the positive solution is $x = 2 + \sqrt{13}$.

If AB = x, AC = 5, and BC = 4, then $AD = \frac{5}{2}$, $CD = \frac{5\sqrt{3}}{2}$, and $BD = |AB - AD| = |x - \frac{5}{2}|$. It follows that $16 = BC^2 = CD^2 + BD^2 = \frac{75}{4} + (x - \frac{5}{2})^2$, which has no solution because $\frac{75}{4} > 16$.

The sum of all possible side lengths is $2 + \sqrt{13} + \sqrt{21}$. The requested sum is 2 + 13 + 21 = 36.

OR

As in the first solution, there are three cases depending on which side is opposite to the 60° angle. In each case, the Law of Cosines can be used to solve for the unknown side. If the unknown side is opposite to the 60° angle, then

$$x^2 = 4^2 + 5^2 - 2 \cdot 4 \cdot 5 \cdot \cos(60^\circ) = 21,$$

so $x = \sqrt{21}$.

If the side of length 5 is opposite to the 60° angle, then

$$5^2 = x^2 + 4^2 - 2 \cdot 4 \cdot x \cdot \cos(60^\circ) = x^2 - 4x + 16,$$

and the positive solution is $2 + \sqrt{13}$.

If the side of length 4 is opposite to the 60° angle, then

$$4^2 = x^2 + 5^2 - 2 \cdot x \cdot 5 \cdot \cos(60^\circ) = x^2 - 5x + 25,$$

which has no real solutions.

The sum of all possible side lengths is $2 + \sqrt{13} + \sqrt{21}$. The requested sum is 2 + 13 + 21 = 36.

12. **Answer (B):** Denote a triangle by the string of its side lengths written in nonincreasing order. Then S has at most one equilateral triangle and at most one of the two triangles 442 and 221. The other possible elements of S are 443, 441, 433, 432, 332, 331, and 322. All other strings are excluded by the triangle inequality. Therefore S has at most 9 elements.

12. **Answer (C):** Let q = AC and r = BD. By the Angle Bisector Theorem,

$$\frac{AC}{CD} = \frac{AB}{BD}$$
, which means $\frac{q}{3} = \frac{10}{r}$, so $r = \frac{30}{q}$.

The possible values of AC can be determined by considering the three Triangle Inequalities in $\triangle ABC$.

- AC + BC > AB, which means q + 3 + r > 10. Substituting for r and simplifying gives $q^2 7q + 30 > 0$, which always holds because $q^2 7q + 30 = \left(q \frac{7}{2}\right)^2 + \frac{71}{4}$.
- BC + AB > AC, which means 3 + r + 10 > q. Substituting $r = \frac{30}{q}$, simplifying, and factoring gives (q 15)(q + 2) < 0, which holds if and only if -2 < q < 15.
- AB + AC > BC, which means 10 + q > 3 + r. Substituting $r = \frac{30}{q}$, simplifying, and factoring gives (q + 10)(q 3) > 0, which holds if and only if q > 3 or q < -10.

Combining these inequalities shows that the set of possible values of q is the open interval (3,15), and the requested sum of the endpoints of the interval is 3+15=18.

Created with iDroo.com

2009A 13. Answer (D): By the Law of Cosines,

$$AC^2 = AB^2 + BC^2 - 2 \cdot AB \cdot BC \cdot \cos \angle ABC = 500 - 400 \cos \angle ABC.$$

Because $\cos \angle ABC$ is between $\cos 120^\circ = -\frac{1}{2}$ and $\cos 135^\circ = -\frac{\sqrt{2}}{2}$, it follows that

$$700 = 500 + 200 \le AC^2 \le 500 + 200\sqrt{2} < 800.$$

13. **Answer (B):** Draw a line parallel to \overline{AD} through point E, intersecting \overline{AB} at F and intersecting \overline{CD} at G. Triangle AEF is a $30-60-90^{\circ}$ triangle with hypotenuse AE=1, so $EF=\frac{\sqrt{3}}{2}$. Region R consists of two congruent trapezoids of height $\frac{1}{6}$, shorter base $EG=1-\frac{\sqrt{3}}{2}$, and longer base the weighted average

$$\frac{2}{3}EG + \frac{1}{3}AD = \frac{2}{3}\left(1 - \frac{\sqrt{3}}{2}\right) + \frac{1}{3} \cdot 1 = 1 - \frac{\sqrt{3}}{3}.$$

Therefore the area of R is

$$2 \cdot \frac{1}{6} \cdot \frac{1}{2} \left(\left(1 - \frac{\sqrt{3}}{2} \right) + \left(1 - \frac{\sqrt{3}}{3} \right) \right) = \frac{1}{6} \left(2 - \frac{5\sqrt{3}}{6} \right) = \frac{12 - 5\sqrt{3}}{36}$$

OR

Place ABCD in a coordinate plane with $B=(0,0),\,A=(1,0),\,$ and C=(0,1). Then the equation of the line BE is $y=\sqrt{3}x,\,$ so $E=(\frac{1}{2},\frac{\sqrt{3}}{2}),\,$ and the point of R closest to B is $(\frac{1}{3},\frac{\sqrt{3}}{3}).$ Thus the region R consists of two congruent trapezoids with height $\frac{1}{6}$ and bases $1-\frac{\sqrt{3}}{2}$ and $1-\frac{\sqrt{3}}{3}$. Then proceed as in the first solution.

13. **Answer (D):** Let D be the foot of the altitude to \overline{BC} . Then $BD = \sqrt{13^2 - 12^2} = 5$ and $DC = \sqrt{15^2 - 12^2} = 9$. Thus BC = BD + DC = 5 + 9 = 14 or BC = DC - BD = 9 - 5 = 4. The sum of the two possible values is 14 + 4 = 18.

2011A

13. **Answer (B):** The largest pairwise difference is 9, so w - z = 9. Let n be either x or y. Because n is between w and z,

$$9 = w - z = (w - n) + (n - z).$$

Therefore the positive differences w - n and n - z must sum to 9. The given pairwise differences that sum to 9 are 3 + 6 and 4 + 5. The remaining pairwise difference must be x - y = 1.

The second largest pairwise difference is 6, so either w-y=6 or x-z=6. In the first case the set of four numbers may be expressed as $\{w, w-5, w-6, w-9\}$. Hence 4w-20=44, so w=16. In the second case w-x=3, and the four numbers may be expressed as $\{w, w-3, w-4, w-9\}$. Therefore 4w-16=44, so w=15. The sum of the possible values for w is 16+15=31.

Note: The possible sets of four numbers are $\{16, 11, 10, 7\}$ and $\{15, 12, 11, 6\}$.

2014A 13. Answer (B): If each friend rooms alone, then there are 5! = 120 ways to assign the guests to the rooms. If one pair of friends room together and the others room alone, then there are $\binom{5}{2} = 10$ ways to choose the roommates and then $5 \cdot 4 \cdot 3 \cdot 2 = 120$ ways to assign the rooms to the 4 sets of occupants, for a total of $10 \cdot 120 = 1200$ possible arrangements. The only other possibility is to have two sets of roommates. In this case the roommates can be chosen in $5 \cdot \frac{1}{2} \binom{4}{2} = 15$ ways (choose the solo lodger first), and then there are $5 \cdot 4 \cdot 3 = 60$ ways to assign the rooms, for a total of $15 \cdot 60 = 900$ possibilities. Therefore the answer is 120 + 1200 + 900 = 2220.

- 2014B 13. Answer (C): There is a triangle with side lengths 1, a, and b if and only if a > b 1. There is a triangle with side lengths $\frac{1}{b}$, $\frac{1}{a}$, and 1 if and only if $\frac{1}{a} > 1 \frac{1}{b}$, that is, $a < \frac{b}{b-1}$. Therefore there are no such triangles if and only if $b 1 \ge a \ge \frac{b}{b-1}$. The smallest possible value of b satisfies $b 1 = \frac{b}{b-1}$, or $b^2 3b + 1 = 0$. The solution with b > 1 is $\frac{1}{2}(3 + \sqrt{5})$. The corresponding value of a is $\frac{1}{2}(1 + \sqrt{5})$.
- 2016B 13. Answer (E): Let Alice, Bob, and the airplane be located at points A, B, and C, respectively. Let D be the point on the ground directly beneath the airplane, and let h be the airplane's altitude, in miles. Then $\triangle ACD$ and $\triangle BCD$ are $30-60-90^{\circ}$ right triangles with right angles at D, so $AD = \sqrt{3}h$ and $BD = \frac{h}{\sqrt{3}}$. Then by the Pythagorean Theorem applied to the right triangle on the ground,

$$100 = AB^2 = AD^2 + BD^2 = \left(\sqrt{3}h\right)^2 + \left(\frac{h}{\sqrt{3}}\right)^2 = \frac{10h^2}{3}.$$

Thus $h = \sqrt{30}$, and the closest of the given choices is 5.5.

- 2004B
 - 14. (D) Because $\triangle ABC$, $\triangle NBK$, and $\triangle AMJ$ are similar right triangles whose hypotenuses are in the ratio 13:8:1, their areas are in the ratio 169:64:1.

The area of $\triangle ABC$ is $\frac{1}{2}(12)(5) = 30$, so the areas of $\triangle NBK$ and $\triangle AMJ$ are $\frac{64}{169}(30)$ and $\frac{1}{169}(30)$, respectively.

Thus the area of pentagon CMJKN is $(1 - \frac{64}{169} - \frac{1}{169})(30) = 240/13$.

- 2007B
- 14. **Answer (D):** Let the side length of $\triangle ABC$ be s. Then the areas of $\triangle APB$, $\triangle BPC$, and $\triangle CPA$ are, respectively, s/2, s, and 3s/2. The area of $\triangle ABC$ is the sum of these, which is 3s. The area of $\triangle ABC$ may also be expressed as $(\sqrt{3}/4)s^2$, so $3s = (\sqrt{3}/4)s^2$. The unique positive solution for s is $4\sqrt{3}$.

- 2010A
 - 14. **Answer (B):** By the Angle Bisector Theorem, $8 \cdot BA = 3 \cdot BC$. Thus BA must be a multiple of 3. If BA = 3, the triangle is degenerate. If BA = 6, then BC = 16, and the perimeter is 6 + 16 + 11 = 33.

15. **Answer (E):** Draw segments $\overline{CB'}$, $\overline{AC'}$, and $\overline{BA'}$. Let X be the area of $\triangle ABC$. Because $\triangle BB'C$ has a base 3 times as long and the same altitude, its area is 3X. Similarly, the areas of $\triangle AA'B$ and $\triangle CC'A$ are also 3X. Furthermore, $\triangle AA'C'$ has 3 times the base and the same height as $\triangle ACC'$, so its area is 9X. The areas of $\triangle CC'B'$ and $\triangle BB'A'$ are also 9X by the same reasoning. Therefore the area of $\triangle A'B'C'$ is X + 3(3X) + 3(9X) = 37X, and the requested ratio is 37:1. Note that nothing in this argument requires $\triangle ABC$ to be equilateral.

Let s = AB. Applying the Law of Cosines to $\triangle B'BC'$ gives

$$(B'C')^{2} = (3s)^{2} + (4s)^{2} - 2 \cdot 3s \cdot 4s \cdot \cos 120^{\circ}$$
$$= s^{2} \left(25 - 24\left(-\frac{1}{2}\right)\right) = 37s^{2}.$$

By symmetry, $\triangle A'B'C'$ is also equilateral and therefore is similar to

 $\triangle ABC$ with similarity ratio $\sqrt{37}$. Hence the ratio of their areas is 37:1.