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UNIT 21 EXERCISES 11-15

SERIES

2009A 11. Answer (E): The outside square for F,, has 4 more diamonds on its boundary
than the outside square for F,,_,. Because the outside square of F, has 4
diamonds, the outside square of F}, has 4(n—2)+4 = 4(n—1) diamonds. Hence
the number of diamonds in figure F,, is the number of diamonds in F,,_; plus
4(n—1), or

1+44+8+124+---4+4(n—-2)+4(n—1)
=14+4(1+2+3+---+(n—-2)+(n—-1))
(n—1)n

2
=14+2(n—1)n.

—1+4

Therefore figure Fyg has 1 +2-19 - 20 = 761 diamonds.
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2009B 11, Answer (D): On Monday, day 1, the birds find § quart of millet in the feeder.
On Tuesday they find

quarts of millet. On Wednesday, day 3, they find

1+31+321
44 4" \4) 1

quarts of millet. The number of quarts of millet they find on day n is

3 () e (0) - B )

4

The birds always find % quart of other seeds, so more than half the seeds are

millet if 1 — ()™ > 2, that is, when (2)" < 1. Because (2)* = 2L > 1 and

3V5 _ 243 _ 1 iyl oo 4 e i 236~ 4
(3)° = fo31 < 7, this will first occur on day 5 which is Friday.

2004B  12. (C) Let ay be the k' term of the sequence. For k > 3,
Ap41 = Qg—2 + Qg1 — Q, SO Qp41 — ap—1 = —(ar — ax_2).
Because the sequence begins
2001, 2002, 2003, 2000, 2005, 1998, . . .,

it follows that the odd-numbered terms and the even-numbered terms each form
arithmetic progressions with common differences of 2 and —2, respectively. The
2004'" term of the original sequence is the 10027 term of the sequence 2002,
2000, 1998.. .., and that term is 2002 + 1001(—2) = 0.

2008B 12 Answer (B): Because the mean of the first n terms is n, their sum is n?.

Therefore the nth term is n? — (n — 1)2 = 2n — 1, and the 2008th term is
2-2008 — 1 = 4015.
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20098 15 Answer (E): Let the nth term of the series be ar™~!. Because

7
8_!_ar _8_g
T oart

it follows that » = 2 and the first term is a = Z—; = 17—25 = 315.

1999
13. (C) Since aney = V99 - a, for all n > 1, it follows that ay,as,as,... is a
geometric sequence whose first term is 1 and whose common ratio is 7 = v/99.

Thus »
Qo0 = Q1 7"100"1 = ( y 99) = 9933.

2002B 13, (B) Let n,n+1,...,n+ 17 be the 18 consecutive integers. Then the sum is
17-18

180+ (1+2+---17) = 18n + = 9(2n + 17).

Since 9 is a perfect square, 2n + 17 must also be a perfect square. The smallest
value of n for which this occurs is n = 4, so 9(2n + 17) = 9 - 25 = 225.
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2005A 13. (D) Each number appears in two sums, so the sum of the sequence is
2(3+5+6+7+9) =60,

The middle term of a five-term arithmetic sequence is the mean of its terms, so
60/5 = 12 is the middle term.

The figure shows an arrangement of the five numbers that meets the requirement.

2004A 14 (A) The terms of the arithmetic progression are 9, 9 + d, and 9 + 2d for some
real number d. The terms of the geometric progression are 9, 11+d, and 29+ 2d.
Therefore
(11 +d)*> =9(29+2d) so d*+4d—140=0.
Thus d = 10 or d = —14. The corresponding geometric progressions are 9, 21,
49 and 9, —3, 1, so the smallest possible value for the third term of the geometric

progression is 1.
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2013A  14.

2014A 14.

Answer (B):

Because the terms form an arithmetic sequence,

1 1

log,,y = 5 (logy5 162 + log,5 1250) = 3 log,5(162 - 1250)
1
=3 log,5(223%5%) = log,,(2 - 3%5%).
Then
log1s @ =  (logyp 162 + 1 — L (log1a(2 - 3%) + logya (2 - 352
8127 = 5 (log12 162 +logo y) = 5 (log12(2 - 3%) + logya(2 - )
1
=3 log15(223%5%) = log,,(2 - 3%5) = log,, 270.

Therefore z = 270.
OR

If (Br) = (logys Ak) is an arithmetic sequence with common difference d, then
(Aj) is a geometric sequence with common ratio 7 = 12¢. Therefore 162, z, y, z, 1250
is a geometric sequence. Let r be their common ratio. Then 1250 = 162r* and
r= 2. Thus z = 162r = 162 - 2 = 270.

Answer (C): Let d = b — a be the common difference of the arithmetic
progression. Then b = a + d, ¢ = a + 2d, and because a,c,b is a geometric
progression,
a+2d a+d
a  a+2d

Thus (a + 2d)(a + 2d) = a(a + d), which simplifies to 3ad + 4d*> = 0. Because
d > 0, it follows that 3a + 4d = 0 and therefore a = —4k and d = 3k for some
positive integer k. Thus ¢ = (—4k) + 2(3k) = 2k, and the smallest value of ¢ is
2-1=2.
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2016B 14. Answer (E): Let r be the common ratio of the geometric series; then
1
roor—r

1 4
S==+4+1+r+r*+...= L
P 1 -
Because S > 0, the smallest value of S occurs when the value of r — 2 is
maximized. The graph of f(r) = r — r? is a downward-opening parabola with

vertex (2, %), so the smallest possible value of S is (—lr = 4. The optimal series
. :

)
. 1 1
1S 2,1,5,2,....

2007B 15. Answer (E): The terms involving odd powers of r form the geometric series
ar + ar® + ar® + ---. Thus

T=a+ar+ar’+.-.-= B

|

1—7r

and
_ar  a ro r
T 1—=r2 1—7 147r 147

Therefore r = 3/4. It follows that a/(1/4) =7, so a = 7/4 and

< |4
3=ar+ar®+ar’+---

a+r—z+§——
442

OR
The sum of the terms involving even powers of r is 7 — 3 = 4. Therefore
3=ar+ar*+ar’+---=r(a+ar’+ar*+-.-) =4r,

so r = 3/4. As in the first solution, a = 7/4 and a + r = 5/2.

2014B 15. Answer (C): Because kInk = In(k*) and the log of a product is the sum of the
logs, p = In[]}_, k*. Therefore e” is the integer 1!-22.33.4%.55.65 = 216.39.55,
and the largest power of 2 dividing e? is 216.



