UNIT 1 EXERCISES 11-15

2D GEO

2011A 11. **Answer (B):** Because AB = 1, the smallest number of jumps is at least 2. The perpendicular bisector of \overline{AB} is the line with equation $x = \frac{1}{2}$, which has no points with integer coordinates, so 2 jumps are not possible. A sequence of 3 jumps is possible; one such sequence is (0,0) to (3,4) to (6,0) to (1,0).

2013A 11. Answer (C):

Let x = DE and y = FG. Then the perimeter of ADE is x + x + x = 3x, the perimeter of DFGE is x + (y - x) + y + (y - x) = 3y - x, and the perimeter of FBCG is y + (1 - y) + 1 + (1 - y) = 3 - y. Because the perimeters are equal, it follows that 3x = 3y - x = 3 - y. Solving this system yields $x = \frac{9}{13}$ and $y = \frac{12}{13}$. Thus $DE + FG = x + y = \frac{21}{13}$.

11. **Answer (D):** The paper's long edge \overline{AB} is the hypotenuse of right triangle ACB, and the crease lies along the perpendicular bisector of \overline{AB} . Because AC > BC, the crease hits \overline{AC} rather than \overline{BC} . Let D be the midpoint of \overline{AB} , and let E be the intersection of \overline{AC} and the line through D perpendicular to \overline{AB} . Then the crease in the paper

is \overline{DE} . Because $\triangle ADE \sim \triangle ACB$, it follows that $\frac{DE}{AD} = \frac{CB}{AC} = \frac{3}{4}$. Thus

$$DE = AD \cdot \frac{CB}{AC} = \frac{5}{2} \cdot \frac{3}{4} = \frac{15}{8}.$$

Created with iDroo.com

2018B

9. **Answer (E):** Note that the sum of the first 100 positive integers is $\frac{1}{2} \cdot 100 \cdot 101 = 5050$. Then

$$\sum_{i=1}^{100} \sum_{j=1}^{100} (i+j) = \sum_{i=1}^{100} \sum_{j=1}^{100} i + \sum_{i=1}^{100} \sum_{j=1}^{100} j$$

$$= \sum_{j=1}^{100} \sum_{i=1}^{100} i + \sum_{i=1}^{100} \sum_{j=1}^{100} j$$

$$= 100 \sum_{i=1}^{100} i + 100 \sum_{j=1}^{100} j$$

$$= 100 (5050 + 5050)$$

$$= 1,010,000.$$

\mathbf{OR}

Note that the sum of the first 100 positive integers is $\frac{1}{2} \cdot 100 \cdot 101 = 5050$. Then

$$\sum_{i=1}^{100} \sum_{j=1}^{100} (i+j) = \sum_{i=1}^{100} ((i+1) + (i+2) + \dots + (i+100))$$

$$= \sum_{i=1}^{100} (100i + 5050)$$

$$= 100 \cdot 5050 + 100 \cdot 5050$$

$$= 1,010,000.$$

\mathbf{OR}

The sum contains 10,000 terms, and the average value of both i and j is $\frac{101}{2}$, so the sum is equal to

$$10,000\left(\frac{101}{2} + \frac{101}{2}\right) = 1,010,000.$$

12. **(B)** The top of the largest ring is 20 cm above its bottom. That point is 2 cm below the top of the next ring, so it is 17 cm above the bottom of the next ring. The additional distances to the bottoms of the remaining rings are $16 \, \text{cm}, 15 \, \text{cm}, \dots, 1 \, \text{cm}$. Thus the total distance is

$$20 + (17 + 16 + \dots + 2 + 1) = 20 + \frac{17 \cdot 18}{2} = 20 + 17 \cdot 9 = 173 \,\mathrm{cm}.$$

OR

The required distance is the sum of the outside diameters of the 18 rings minus a 2-cm overlap for each of the 17 pairs of consecutive rings. This equals

$$(3+4+5+\cdots+20)-2\cdot17=(1+2+3+4+5+\cdots+20)-3-34=\frac{20\cdot21}{2}-37=173\,\mathrm{cm}.$$

2011B

12. **Answer (A):** Assume the octagon's edge is 1. Then the corner triangles have hypotenuse 1 and thus legs $\frac{\sqrt{2}}{2}$ and area $\frac{1}{4}$ each; the four rectangles are 1 by $\frac{\sqrt{2}}{2}$ and have area $\frac{\sqrt{2}}{2}$ each, and the center square has area 1. The total area is $4 \cdot \frac{1}{4} + 4 \cdot \frac{\sqrt{2}}{2} + 1 = 2 + 2\sqrt{2}$. The probability that the dart hits the center square is $\frac{1}{2+2\sqrt{2}} = \frac{\sqrt{2}-1}{2}$.

12. **Answer (C):** Applying the Angle Bisector Theorem to $\triangle BAC$ gives BD:DC=6:8, so $BD=\frac{6}{6+8}\cdot 7=3$. Then applying the Angle Bisector Theorem to $\triangle ABD$ gives AF:FD=6:3=2:1.

Note: More generally the ratio AF : FD is (AB + CA) : BC, which equals 2 : 1 whenever AB, BC, CA forms an arithmetic progression.

2006B 13. (C) Since $\angle BAD = 60^{\circ}$, isosceles $\triangle BAD$ is also equilateral. As a consequence, $\triangle AEB$, $\triangle AED$, $\triangle BED$, $\triangle BFD$, $\triangle BFC$, and $\triangle CFD$ are congruent. These six triangles have equal areas and their union forms rhombus ABCD, so each has area 24/6 = 4. Rhombus BFDE is the union of $\triangle BED$ and $\triangle BFD$, so its area is 8.

Let the diagonals of rhombus ABCD intersect at O. Since the diagonals of a rhombus intersect at right angles, $\triangle ABO$ is a $30-60-90^{\circ}$ triangle. Therefore $AO = \sqrt{3} \cdot BO$. Because AO and BO are half the length of the longer diagonals of rhombi ABCD and BFDE, respectively, it follows that

$$\frac{\operatorname{Area}(BFDE)}{\operatorname{Area}(ABCD)} = \left(\frac{BO}{AO}\right)^2 = \frac{1}{3}.$$

Thus the area of rhombus BFDE is (1/3)(24) = 8.

13. (E) Let r, s, and t be the radii of the circles centered at A, B, and C, respectively. Then r+s=3, r+t=4, and s+t=5, from which r=1, s=2, and t=3. Thus the sum of the areas of the circles is

$$\pi(1^2 + 2^2 + 3^2) = 14\pi.$$

2018B

13. Answer (C): Let E and F be the midpoints of sides \overline{BC} and \overline{CD} , respectively. Let G and H be the centroids of $\triangle BCP$ and $\triangle CDP$, respectively. Then G is on \overline{PE} , a median of $\triangle BCP$, a distance $\frac{2}{3}$ of the way from P to E. Similarly, H is on \overline{PF} a distance $\frac{2}{3}$ of the way from P to F. Thus \overline{GH} is parallel to \overline{EF} and $\frac{2}{3}$ the length of \overline{EF} . Because BC = 30, it follows that EC = 15, $EF = 15\sqrt{2}$, and $GH = 10\sqrt{2}$. The midpoints of \overline{AB} , \overline{BC} , \overline{CD} , and \overline{DA} form a square, so the centroids of $\triangle ABP$, $\triangle BCP$, $\triangle CDP$, and $\triangle DAP$ also form a square, and that square has side length $10\sqrt{2}$. The requested area is $(10\sqrt{2})^2 = 200$.

Place the figure in the coordinate plane with A = (0,30), B = (0,0), C = (30,0), D = (30,30), and P = (3x,3y). Then the coordinates of the centroids of the four triangles are found by averaging the coordinates of the vertices: (x,y+10), (x+10,y), (x+20,y+10), and (x+10,y+20). It can be seen that the quadrilateral formed by the centroids is a square with center (x+10,y+10) and vertices aligned vertically and horizontally. Its area is half the product of the lengths of its diagonals, $\frac{1}{2} \cdot 20 \cdot 20 = 200$.

Note: As the solutions demonstrate, the inner quadrilateral is always a square, and its size is independent of the location of point P. The location of the square within square ABCD does depend on the location of P.

Created with iDroo.com